Suppr超能文献

胰腺癌的基质调控:纤连蛋白信号传导的新见解

Matrix control of pancreatic cancer: New insights into fibronectin signaling.

作者信息

Topalovski Mary, Brekken Rolf A

机构信息

Hamon Center for Therapeutic Oncology Research and the Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.

Hamon Center for Therapeutic Oncology Research and the Division of Surgical Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Departments of Surgery and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Cancer Lett. 2016 Oct 10;381(1):252-8. doi: 10.1016/j.canlet.2015.12.027. Epub 2015 Dec 29.

Abstract

Pancreatic ductal adenocarcinoma (PDA) is a highly metastatic disease that resists most current therapies. A defining characteristic of PDA is an intense fibrotic response that promotes tumor cell invasion and chemoresistance. Efforts to understand the complex relationship between the tumor and its extracellular network and to therapeutically perturb tumor-stroma interactions are ongoing. Fibronectin (FN), a provisional matrix protein abundant in PDA stroma but not normal tissues, supports metastatic spread and chemoresistance of this deadly disease. FN also supports angiogenesis, which is required for even hypovascular tumors such as PDA to develop and progress. Targeting components of the tumor stroma, such as FN, can effectively reduce tumor growth and spread while also enhancing delivery of chemotherapy. Here, we review the molecular mechanisms by which FN drives angiogenesis, metastasis and chemoresistance in PDA. In light of these new findings, we also discuss therapeutic strategies to inhibit FN signaling.

摘要

胰腺导管腺癌(PDA)是一种具有高度转移性的疾病,对目前的大多数治疗方法均具有抗性。PDA的一个决定性特征是强烈的纤维化反应,这种反应会促进肿瘤细胞的侵袭和化疗耐药性。目前正在努力了解肿瘤与其细胞外网络之间的复杂关系,并通过治疗手段干扰肿瘤-基质相互作用。纤连蛋白(FN)是一种在PDA基质中丰富但在正常组织中不存在的临时基质蛋白,它支持这种致命疾病的转移扩散和化疗耐药性。FN还支持血管生成,而血管生成是即使像PDA这样的低血管肿瘤发展和进展所必需的。靶向肿瘤基质成分,如FN,可以有效减少肿瘤生长和扩散,同时增强化疗药物的递送。在这里,我们综述了FN在PDA中驱动血管生成、转移和化疗耐药性的分子机制。鉴于这些新发现,我们还讨论了抑制FN信号传导的治疗策略。

相似文献

1
Matrix control of pancreatic cancer: New insights into fibronectin signaling.
Cancer Lett. 2016 Oct 10;381(1):252-8. doi: 10.1016/j.canlet.2015.12.027. Epub 2015 Dec 29.
2
Cancer-associated fibroblasts in pancreatic adenocarcinoma.
Future Oncol. 2015 Sep;11(18):2603-10. doi: 10.2217/FON.15.176. Epub 2015 Aug 18.
3
Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer.
Gastroenterology. 2018 Mar;154(4):820-838. doi: 10.1053/j.gastro.2017.11.280. Epub 2017 Dec 26.
4
Hypoxia and Transforming Growth Factor β Cooperate to Induce Fibulin-5 Expression in Pancreatic Cancer.
J Biol Chem. 2016 Oct 14;291(42):22244-22252. doi: 10.1074/jbc.M116.730945. Epub 2016 Aug 16.
5
Microenvironmental factors and extracellular matrix degradation in pancreatic cancer.
JOP. 2014 Jul 28;15(4):280-5. doi: 10.6092/1590-8577/2638.
6
Overview of pre-clinical and clinical studies targeting angiogenesis in pancreatic ductal adenocarcinoma.
Cancer Lett. 2016 Oct 10;381(1):201-10. doi: 10.1016/j.canlet.2015.11.047. Epub 2015 Dec 23.
7
Pancreatic cancer: the role of pancreatic stellate cells in tumor progression.
Pancreatology. 2010;10(6):673-81. doi: 10.1159/000320711. Epub 2011 Jan 18.
8
Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives.
Biochim Biophys Acta Rev Cancer. 2020 Dec;1874(2):188444. doi: 10.1016/j.bbcan.2020.188444. Epub 2020 Oct 5.
9
Targeting hypoxic tumor microenvironment in pancreatic cancer.
J Hematol Oncol. 2021 Jan 13;14(1):14. doi: 10.1186/s13045-020-01030-w.
10
Pancreatic cancer stroma: an update on therapeutic targeting strategies.
Nat Rev Gastroenterol Hepatol. 2020 Aug;17(8):487-505. doi: 10.1038/s41575-020-0300-1. Epub 2020 May 11.

引用本文的文献

1
Hyaluronidase: structure, mechanism of action, diseases and therapeutic targets.
Mol Biomed. 2025 Jul 12;6(1):50. doi: 10.1186/s43556-025-00299-y.
3
Unveiling circulating targets in pancreatic cancer: Insights from proteogenomic evidence and clinical cohorts.
iScience. 2025 Jan 20;28(3):111693. doi: 10.1016/j.isci.2024.111693. eCollection 2025 Mar 21.
4
Mechanistic role of FN1 in LAIR-1 mediated downregulation of ovarian cancer cell proliferation.
BMC Cancer. 2025 Feb 25;25(1):339. doi: 10.1186/s12885-025-13692-1.
5
Targeting Pancreatic Cancer Cell Stemness by Blocking Fibronectin-Binding Integrins on Cancer-Associated Fibroblasts.
Cancer Res Commun. 2025 Jan 1;5(1):195-208. doi: 10.1158/2767-9764.CRC-24-0491.
6
The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas.
Biomimetics (Basel). 2024 Oct 2;9(10):598. doi: 10.3390/biomimetics9100598.
10
PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response.
Cells. 2023 Nov 23;12(23):2692. doi: 10.3390/cells12232692.

本文引用的文献

1
Fibulin-5 Blocks Microenvironmental ROS in Pancreatic Cancer.
Cancer Res. 2015 Dec 1;75(23):5058-69. doi: 10.1158/0008-5472.CAN-15-0744. Epub 2015 Nov 17.
2
Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver.
Nat Cell Biol. 2015 Jun;17(6):816-26. doi: 10.1038/ncb3169. Epub 2015 May 18.
3
Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors.
PLoS One. 2015 Mar 25;10(3):e0120872. doi: 10.1371/journal.pone.0120872. eCollection 2015.
4
Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread.
Cancer Cell. 2015 Jan 12;27(1):123-37. doi: 10.1016/j.ccell.2014.10.015.
5
Desmoplasia and chemoresistance in pancreatic cancer.
Cancers (Basel). 2014 Oct 21;6(4):2137-54. doi: 10.3390/cancers6042137.
6
α-Smooth muscle actin expression and desmoplastic stromal reaction in pancreatic cancer: results from the CONKO-001 study.
Br J Cancer. 2014 Nov 11;111(10):1917-23. doi: 10.1038/bjc.2014.495. Epub 2014 Oct 14.
7
A first-in-human study of the anti-α5β1 integrin monoclonal antibody PF-04605412 administered intravenously to patients with advanced solid tumors.
Cancer Chemother Pharmacol. 2014 Nov;74(5):1039-46. doi: 10.1007/s00280-014-2576-8. Epub 2014 Sep 12.
8
Stromal reengineering to treat pancreas cancer.
Carcinogenesis. 2014 Jul;35(7):1451-60. doi: 10.1093/carcin/bgu115. Epub 2014 Jun 7.
9
Reply: 'Comments on Stromal disrupting effects of nab-paclitaxel in pancreatic cancer'.
Br J Cancer. 2014 Oct 14;111(8):1677-8. doi: 10.1038/bjc.2014.129. Epub 2014 Mar 18.
10
Transport properties of pancreatic cancer describe gemcitabine delivery and response.
J Clin Invest. 2014 Apr;124(4):1525-36. doi: 10.1172/JCI73455. Epub 2014 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验