Suppr超能文献

等位基因特异性抑制剂通过捕获机制使突变型KRAS G12C失活。

Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.

作者信息

Lito Piro, Solomon Martha, Li Lian-Sheng, Hansen Rasmus, Rosen Neal

机构信息

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Science. 2016 Feb 5;351(6273):604-8. doi: 10.1126/science.aad6204. Epub 2016 Jan 14.

Abstract

It is thought that KRAS oncoproteins are constitutively active because their guanosine triphosphatase (GTPase) activity is disabled. Consequently, drugs targeting the inactive or guanosine 5'-diphosphate-bound conformation are not expected to be effective. We describe a mechanism that enables such drugs to inhibit KRAS(G12C) signaling and cancer cell growth. Inhibition requires intact GTPase activity and occurs because drug-bound KRAS(G12C) is insusceptible to nucleotide exchange factors and thus trapped in its inactive state. Indeed, mutants completely lacking GTPase activity and those promoting exchange reduced the potency of the drug. Suppressing nucleotide exchange activity downstream of various tyrosine kinases enhanced KRAS(G12C) inhibition, whereas its potentiation had the opposite effect. These findings reveal that KRAS(G12C) undergoes nucleotide cycling in cancer cells and provide a basis for developing effective therapies to treat KRAS(G12C)-driven cancers.

摘要

人们认为KRAS癌蛋白具有组成性活性,因为它们的鸟苷三磷酸酶(GTPase)活性被禁用。因此,靶向无活性或结合鸟苷5'-二磷酸构象的药物预计不会有效。我们描述了一种机制,使这类药物能够抑制KRAS(G12C)信号传导和癌细胞生长。抑制作用需要完整的GTPase活性,其发生是因为结合药物的KRAS(G12C)对核苷酸交换因子不敏感,因此被困在其无活性状态。事实上,完全缺乏GTPase活性的突变体和促进交换的突变体降低了药物的效力。抑制各种酪氨酸激酶下游的核苷酸交换活性增强了KRAS(G12C)的抑制作用,而其增强则产生相反的效果。这些发现揭示了KRAS(G12C)在癌细胞中经历核苷酸循环,并为开发治疗KRAS(G12C)驱动的癌症的有效疗法提供了基础。

相似文献

1
Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism.
Science. 2016 Feb 5;351(6273):604-8. doi: 10.1126/science.aad6204. Epub 2016 Jan 14.
2
Signalling: Putting the brakes on KRAS-G12C nucleotide cycling.
Nat Rev Cancer. 2016 Mar;16(3):127. doi: 10.1038/nrc.2016.13. Epub 2016 Feb 19.
3
KRAS inhibition produces a driver-limited state revealing collateral dependencies.
Sci Signal. 2019 May 28;12(583):eaaw9450. doi: 10.1126/scisignal.aaw9450.
4
Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor.
Cell. 2018 Jan 25;172(3):578-589.e17. doi: 10.1016/j.cell.2018.01.006.
5
The KRAS Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients.
Cancer Discov. 2020 Jan;10(1):54-71. doi: 10.1158/2159-8290.CD-19-1167. Epub 2019 Oct 28.
6
Diverse alterations associated with resistance to KRAS(G12C) inhibition.
Nature. 2021 Nov;599(7886):679-683. doi: 10.1038/s41586-021-04065-2. Epub 2021 Nov 10.
8
From bench to bedside: current development and emerging trend of KRAS-targeted therapy.
Acta Pharmacol Sin. 2024 Apr;45(4):686-703. doi: 10.1038/s41401-023-01194-4. Epub 2023 Dec 4.
10
Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition.
Nature. 2020 Jan;577(7790):421-425. doi: 10.1038/s41586-019-1884-x. Epub 2020 Jan 8.

引用本文的文献

3
Recent Therapies and Biomarkers in Mucinous Ovarian Carcinoma.
Cells. 2025 Aug 9;14(16):1232. doi: 10.3390/cells14161232.
4
Literature review of advances and challenges in mutant non-small cell lung cancer.
Transl Lung Cancer Res. 2025 Jul 31;14(7):2799-2820. doi: 10.21037/tlcr-2025-164. Epub 2025 Jul 15.
6
Denitrogenative Alkylation of K-Ras(G12D) Inhibits Oncogenic Signaling in Cancer Cells.
J Am Chem Soc. 2025 Jul 16;147(28):24785-24792. doi: 10.1021/jacs.5c06745. Epub 2025 Jun 30.
7
Glutamine Metabolism: Molecular Regulation, Biological Functions, and Diseases.
MedComm (2020). 2025 Jun 25;6(7):e70120. doi: 10.1002/mco2.70120. eCollection 2025 Jul.
9
Improving outcomes of patients with pancreatic cancer.
Nat Rev Clin Oncol. 2025 May 6. doi: 10.1038/s41571-025-01019-9.

本文引用的文献

1
Drugging the undruggable RAS: Mission possible?
Nat Rev Drug Discov. 2014 Nov;13(11):828-51. doi: 10.1038/nrd4389. Epub 2014 Oct 17.
2
Comprehensive molecular profiling of lung adenocarcinoma.
Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9.
3
Small-molecule modulation of Ras signaling.
Nat Chem Biol. 2014 Aug;10(8):613-22. doi: 10.1038/nchembio.1560. Epub 2014 Jun 15.
4
Dragging ras back in the ring.
Cancer Cell. 2014 Mar 17;25(3):272-81. doi: 10.1016/j.ccr.2014.02.017.
5
Drug discovery: Pocket of opportunity.
Nature. 2013 Nov 28;503(7477):475-6. doi: 10.1038/nature12835. Epub 2013 Nov 20.
6
K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.
Nature. 2013 Nov 28;503(7477):548-51. doi: 10.1038/nature12796. Epub 2013 Nov 20.
7
Tumor adaptation and resistance to RAF inhibitors.
Nat Med. 2013 Nov;19(11):1401-9. doi: 10.1038/nm.3392.
8
NMR-based functional profiling of RASopathies and oncogenic RAS mutations.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4574-9. doi: 10.1073/pnas.1218173110. Epub 2013 Mar 4.
10
EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma.
Cancer Cell. 2012 Sep 11;22(3):318-30. doi: 10.1016/j.ccr.2012.08.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验