Young Courtney S, Hicks Michael R, Ermolova Natalia V, Nakano Haruko, Jan Majib, Younesi Shahab, Karumbayaram Saravanan, Kumagai-Cresse Chino, Wang Derek, Zack Jerome A, Kohn Donald B, Nakano Atsushi, Nelson Stanley F, Miceli M Carrie, Spencer Melissa J, Pyle April D
Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Neurology, University of California, Los Angeles, CA 90095, USA.
Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
Cell Stem Cell. 2016 Apr 7;18(4):533-40. doi: 10.1016/j.stem.2016.01.021. Epub 2016 Feb 11.
Mutations in DMD disrupt the reading frame, prevent dystrophin translation, and cause Duchenne muscular dystrophy (DMD). Here we describe a CRISPR/Cas9 platform applicable to 60% of DMD patient mutations. We applied the platform to DMD-derived hiPSCs where successful deletion and non-homologous end joining of up to 725 kb reframed the DMD gene. This is the largest CRISPR/Cas9-mediated deletion shown to date in DMD. Use of hiPSCs allowed evaluation of dystrophin in disease-relevant cell types. Cardiomyocytes and skeletal muscle myotubes derived from reframed hiPSC clonal lines had restored dystrophin protein. The internally deleted dystrophin was functional as demonstrated by improved membrane integrity and restoration of the dystrophin glycoprotein complex in vitro and in vivo. Furthermore, miR31 was reduced upon reframing, similar to observations in Becker muscular dystrophy. This work demonstrates the feasibility of using a single CRISPR pair to correct the reading frame for the majority of DMD patients.
DMD基因的突变会破坏阅读框,阻止肌营养不良蛋白的翻译,并导致杜氏肌营养不良症(DMD)。在此,我们描述了一种适用于60% DMD患者突变的CRISPR/Cas9平台。我们将该平台应用于源自DMD的人诱导多能干细胞(hiPSC),成功删除了高达725 kb的片段,并通过非同源末端连接对DMD基因进行了重新编码。这是迄今为止在DMD中显示的最大的CRISPR/Cas9介导的删除。使用hiPSC能够在与疾病相关的细胞类型中评估肌营养不良蛋白。源自重新编码的hiPSC克隆系的心肌细胞和骨骼肌肌管恢复了肌营养不良蛋白的表达。体内外实验均表明,内部缺失的肌营养不良蛋白具有功能,可改善膜完整性并恢复肌营养不良蛋白糖蛋白复合物。此外,重新编码后miR31水平降低,这与贝克肌营养不良症中的观察结果相似。这项工作证明了使用单一CRISPR对纠正大多数DMD患者阅读框的可行性。