Suppr超能文献

肾脏损伤与疾病中的氧化机制

Oxidant Mechanisms in Renal Injury and Disease.

作者信息

Ratliff Brian B, Abdulmahdi Wasan, Pawar Rahul, Wolin Michael S

机构信息

1 Department of Medicine, Renal Research Institute , New York Medical College, Valhalla, New York.

2 Department of Physiology, Renal Research Institute , New York Medical College, Valhalla, New York.

出版信息

Antioxid Redox Signal. 2016 Jul 20;25(3):119-46. doi: 10.1089/ars.2016.6665. Epub 2016 Apr 26.

Abstract

SIGNIFICANCE

A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression.

RECENT ADVANCES

Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes.

CRITICAL ISSUES

The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules.

FUTURE DIRECTIONS

Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119-146.

摘要

意义

无论物种如何,所有形式的急性和慢性肾损伤之间的一个共同联系是在损伤/疾病进展过程中活性氧(ROS)和活性氮(RNS)的生成增加。虽然低水平的ROS和RNS对于促生存信号传导、细胞增殖和生长以及血管反应性调节是必需的,但ROS和RNS生成与消除的失衡会导致炎症、细胞死亡、组织损伤以及疾病/损伤进展。

最新进展

肾脏氧化应激的许多方面仍需研究,包括促使ROS/RNS生成及随后肾脏损伤的机制的阐明。然而,我们目前对氧化应激病理学的主要特征及其与肾损伤/疾病的联系有了基本了解,本综述对此进行了总结。

关键问题

本综述总结了损伤/疾病期间肾脏氧化应激的关键来源,包括线粒体、NADPH氧化酶和诱导型一氧化氮合酶产生的ROS和RNS。接下来,综述总结了抵御氧化应激的肾脏抗氧化系统,包括超氧化物歧化酶和过氧化氢酶、谷胱甘肽和硫氧还蛋白系统等。然后,我们描述了氧化应激如何影响肾功能并促进每个肾单位节段(包括肾血管、肾小球和肾小管)的损伤。

未来方向

尽管迄今为止抗氧化剂在治疗肾损伤/疾病方面取得的成功有限,但防止ROS和RNS的生成和积累为潜在的治疗提供了理想靶点。本综述讨论了先前使用的抗氧化剂治疗的缺点以及新抗氧化剂的潜在前景。《抗氧化与氧化还原信号》25卷,第119 - 146页。

相似文献

1
Oxidant Mechanisms in Renal Injury and Disease.
Antioxid Redox Signal. 2016 Jul 20;25(3):119-46. doi: 10.1089/ars.2016.6665. Epub 2016 Apr 26.
2
Obesity and Diabetic Kidney Disease: Role of Oxidant Stress and Redox Balance.
Antioxid Redox Signal. 2016 Aug 1;25(4):208-16. doi: 10.1089/ars.2016.6696. Epub 2016 May 4.
3
Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?
Hypertension. 2004 Sep;44(3):248-52. doi: 10.1161/01.HYP.0000138070.47616.9d. Epub 2004 Jul 19.
4
Diabetes and Kidney Disease: Role of Oxidative Stress.
Antioxid Redox Signal. 2016 Oct 20;25(12):657-684. doi: 10.1089/ars.2016.6664. Epub 2016 Apr 1.
6
Free radicals, metals and antioxidants in oxidative stress-induced cancer.
Chem Biol Interact. 2006 Mar 10;160(1):1-40. doi: 10.1016/j.cbi.2005.12.009. Epub 2006 Jan 23.
9
Mitochondria, reactive oxygen species and cadmium toxicity in the kidney.
Toxicol Lett. 2010 Sep 15;198(1):49-55. doi: 10.1016/j.toxlet.2010.04.013. Epub 2010 Apr 22.
10
Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
Free Radic Biol Med. 2015 Jul;84:65-76. doi: 10.1016/j.freeradbiomed.2015.03.018. Epub 2015 Apr 2.

引用本文的文献

1
Maternal undernourishment impairs murine placental development during pregnancy.
BMC Pregnancy Childbirth. 2025 Aug 26;25(1):889. doi: 10.1186/s12884-025-07951-z.
6
Protective effect and molecular mechanisms of magnolol in ischemic stroke.
Pharmacol Rep. 2025 Jul 23. doi: 10.1007/s43440-025-00764-z.
7
Macula Densa Nitric Oxide Synthase 1β Restoration by Kidney Alkalization Enhances Renal Graft Outcomes.
Am J Physiol Renal Physiol. 2025 Jul 21. doi: 10.1152/ajprenal.00195.2025.
8
Transcriptomic Redox Dysregulation in a Rat Model of Metabolic Syndrome-Associated Kidney Injury.
Antioxidants (Basel). 2025 Jun 17;14(6):746. doi: 10.3390/antiox14060746.

本文引用的文献

3
Acute reactive oxygen species (ROS)-dependent effects of IL-1β, TNF-α, and IL-6 on the glomerular filtration barrier (GFB) in vivo.
Am J Physiol Renal Physiol. 2015 Nov 1;309(9):F800-6. doi: 10.1152/ajprenal.00111.2015. Epub 2015 Aug 19.
4
Sulforaphane attenuation of experimental diabetic nephropathy involves GSK-3 beta/Fyn/Nrf2 signaling pathway.
J Nutr Biochem. 2015 Jun;26(6):596-606. doi: 10.1016/j.jnutbio.2014.12.008. Epub 2015 Feb 12.
5
The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity.
Ren Fail. 2015 Mar;37(2):332-6. doi: 10.3109/0886022X.2014.986005. Epub 2015 Jan 16.
6
The synthesis of sulforaphane analogues and their protection effect against cisplatin induced cytotoxicity in kidney cells.
Bioorg Med Chem Lett. 2015 Jan 1;25(1):62-6. doi: 10.1016/j.bmcl.2014.11.014. Epub 2014 Nov 11.
7
NADPH oxidase 5 and renal disease.
Curr Opin Nephrol Hypertens. 2015 Jan;24(1):81-7. doi: 10.1097/MNH.0000000000000081.
8
Nox-4 and progressive kidney disease.
Curr Opin Nephrol Hypertens. 2015 Jan;24(1):74-80. doi: 10.1097/MNH.0000000000000082.
10
High-mobility group box 1 is a novel deacetylation target of Sirtuin1.
Kidney Int. 2015 Jan;87(1):95-108. doi: 10.1038/ki.2014.217. Epub 2014 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验