Suppr超能文献

糖尿病与肾脏疾病:氧化应激的作用

Diabetes and Kidney Disease: Role of Oxidative Stress.

作者信息

Jha Jay C, Banal Claudine, Chow Bryna S M, Cooper Mark E, Jandeleit-Dahm Karin

机构信息

1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .

2 Department of Medicine, Monash University , Melbourne, Australia .

出版信息

Antioxid Redox Signal. 2016 Oct 20;25(12):657-684. doi: 10.1089/ars.2016.6664. Epub 2016 Apr 1.

Abstract

Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.

摘要

肾内氧化应激在糖尿病肾病(DKD)的发生和发展中起关键作用。在抗氧化途径不足的同时,活性氧(ROS)的过度产生导致氧化应激增强。糖尿病中肾脏ROS的产生主要由各种烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOXs)介导,但抗氧化系统缺陷以及线粒体功能障碍也可能起作用。最新进展:针对ROS产生源的有效药物有望使肾脏免受氧化损伤,并预防DKD的后续进展。关键问题和未来方向:在本综述中,我们总结并批判性地分析了已被证明参与糖尿病中NOX诱导的肾损伤的分子和细胞机制,特别关注肾小球损伤增加、蛋白尿的发展和肾小管间质纤维化以及线粒体功能障碍的作用。此外,还讨论了针对NOX亚型的新型药物。《抗氧化与氧化还原信号》25卷,657 - 684页。

相似文献

1
Diabetes and Kidney Disease: Role of Oxidative Stress.
Antioxid Redox Signal. 2016 Oct 20;25(12):657-684. doi: 10.1089/ars.2016.6664. Epub 2016 Apr 1.
2
SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition.
Lab Invest. 2018 Oct;98(10):1276-1290. doi: 10.1038/s41374-018-0043-6. Epub 2018 Mar 14.
3
Upstream regulators and downstream effectors of NADPH oxidases as novel therapeutic targets for diabetic kidney disease.
Mol Cells. 2015 Apr;38(4):285-96. doi: 10.14348/molcells.2015.0010. Epub 2015 Mar 31.
4
Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy.
Rev Diabet Stud. 2015 Spring-Summer;12(1-2):134-56. doi: 10.1900/RDS.2015.12.134. Epub 2015 Aug 10.
5
Oxidant Mechanisms in Renal Injury and Disease.
Antioxid Redox Signal. 2016 Jul 20;25(3):119-46. doi: 10.1089/ars.2016.6665. Epub 2016 Apr 26.
6
Oxidative stress in diabetic nephropathy.
Curr Med Chem. 2010;17(34):4256-69. doi: 10.2174/092986710793348581.
7
Molecular Interactions Between Reactive Oxygen Species and Autophagy in Kidney Disease.
Int J Mol Sci. 2019 Aug 3;20(15):3791. doi: 10.3390/ijms20153791.
8
Reactive oxygen species and oxidative stress.
Contrib Nephrol. 2011;170:102-112. doi: 10.1159/000324955. Epub 2011 Jun 9.
9
Evaluating the Oxidative Stress in Renal Diseases: What Is the Role for S-Glutathionylation?
Antioxid Redox Signal. 2016 Jul 20;25(3):147-64. doi: 10.1089/ars.2016.6656. Epub 2016 Apr 19.

引用本文的文献

6
EphrinB2 alleviates tubulointerstitial fibrosis in diabetic kidney disease.
J Transl Med. 2025 Jul 24;23(1):821. doi: 10.1186/s12967-025-06852-1.
10
Oxidative Stress: Signaling Pathways, Biological Functions, and Disease.
MedComm (2020). 2025 Jul 1;6(7):e70268. doi: 10.1002/mco2.70268. eCollection 2025 Jul.

本文引用的文献

1
Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy.
Diabetologia. 2016 Feb;59(2):379-89. doi: 10.1007/s00125-015-3796-0. Epub 2015 Oct 28.
2
Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy.
Dis Model Mech. 2015 Oct 1;8(10):1311-21. doi: 10.1242/dmm.019398. Epub 2015 Aug 6.
4
Metabolomics Reveals a Key Role for Fumarate in Mediating the Effects of NADPH Oxidase 4 in Diabetic Kidney Disease.
J Am Soc Nephrol. 2016 Feb;27(2):466-81. doi: 10.1681/ASN.2015030302. Epub 2015 Jul 22.
5
The novel NADPH oxidase 4 inhibitor GLX351322 counteracts glucose intolerance in high-fat diet-treated C57BL/6 mice.
Free Radic Res. 2015;49(11):1308-18. doi: 10.3109/10715762.2015.1067697. Epub 2015 Jul 30.
6
Insulin stimulates SGLT2-mediated tubular glucose absorption via oxidative stress generation.
Diabetol Metab Syndr. 2015 May 24;7:48. doi: 10.1186/s13098-015-0044-1. eCollection 2015.
7
8
Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes.
Am J Physiol Renal Physiol. 2015 Jun 1;308(11):F1276-87. doi: 10.1152/ajprenal.00396.2014. Epub 2015 Feb 4.
9
ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.
Free Radic Biol Med. 2015 Apr;81:13-21. doi: 10.1016/j.freeradbiomed.2014.12.024. Epub 2015 Jan 16.
10
NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways.
Circulation. 2015 Feb 17;131(7):643-55. doi: 10.1161/CIRCULATIONAHA.114.011079. Epub 2015 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验