Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands.
Trends Biotechnol. 2016 Jul;34(7):575-587. doi: 10.1016/j.tibtech.2016.02.004. Epub 2016 Mar 2.
The increasing demand for environmentally friendly production processes of green chemicals and fuels has stimulated research in microbial metabolic engineering. CRISPR-Cas-based tools for genome editing and expression control have enabled fast, easy, and accurate strain development for established production platform organisms, such as Escherichia coli and Saccharomyces cerevisiae. However, the growing interest in alternative production hosts, for which genome editing options are generally limited, requires further developing such engineering tools. In this review, we discuss established and emerging CRISPR-Cas-based tools for genome editing and transcription control of model and non-model prokaryotes, and we analyse the possibilities for further improvement and expansion of these tools for next generation prokaryotic engineering.
对绿色化学品和燃料环保生产工艺日益增长的需求,刺激了微生物代谢工程领域的研究。基于 CRISPR-Cas 的基因组编辑和表达控制工具,使得对已建立的生产平台生物(如大肠杆菌和酿酒酵母)进行快速、简便、精确的菌株开发成为可能。然而,对于替代生产宿主(通常基因组编辑选项有限)的兴趣日益浓厚,这就需要进一步开发此类工程工具。在这篇综述中,我们讨论了用于模型和非模型原核生物基因组编辑和转录控制的已建立和新兴的基于 CRISPR-Cas 的工具,并分析了进一步改进和扩展这些工具以用于下一代原核工程的可能性。