Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy.
Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy.
Cancer Treat Rev. 2016 Apr;45:46-57. doi: 10.1016/j.ctrv.2016.03.005. Epub 2016 Mar 8.
Metabolism of bladder cancer represents a key issue for cancer research. Several metabolic altered pathways are involved in bladder tumorigenesis, representing therefore interesting targets for therapy. Tumor cells, including urothelial cancer cells, rely on a peculiar shift to aerobic glycolysis-dependent metabolism (the Warburg-effect) as the main energy source to sustain their uncontrolled growth and proliferation. Therefore, the high glycolytic flux depends on the overexpression of glycolysis-related genes (SRC-3, glucose transporter type 1 [GLUT1], GLUT3, lactic dehydrogenase A [LDHA], LDHB, hexokinase 1 [HK1], HK2, pyruvate kinase type M [PKM], and hypoxia-inducible factor 1-alpha [HIF-1α]), resulting in an overproduction of pyruvate, alanine and lactate. Concurrently, bladder cancer metabolism displays an increased expression of genes favoring the pentose phosphate pathway (glucose-6-phosphate dehydrogenase [G6PD]) and the fatty-acid synthesis (fatty acid synthase [FASN]), along with a decrease of AMP-activated protein kinase (AMPK) and Krebs cycle activities. Moreover, the PTEN/PI3K/AKT/mTOR pathway, hyper-activated in bladder cancer, acts as central regulator of aerobic glycolysis, hence contributing to cancer metabolic switch and tumor cell proliferation. Besides glycolysis, glycogen metabolism pathway plays a robust role in bladder cancer development. In particular, the overexpression of GLUT-1, the loss of the tumor suppressor glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL), and the increased activity of the tumor promoter enzyme glycogen phosphorylase impair glycogen metabolism. An increase in glucose uptake, decrease in normal cellular glycogen storage, and overproduction of lactate are consequences of decreased oxidative phosphorylation and inability to reuse glucose into the pentose phosphate and de novo fatty acid synthesis pathways. Moreover, AGL loss determines augmented levels of the serine-to-glycine enzyme serine hydroxymethyltransferase-2 (SHMT2), resulting in an increased glycine and purine ring of nucleotides synthesis, thus supporting cells proliferation. A deep understanding of the metabolic phenotype of bladder cancer will provide novel opportunities for targeted therapeutic strategies.
膀胱癌的代谢是癌症研究的一个关键问题。几种代谢改变的途径参与了膀胱癌的发生,因此成为治疗的有趣靶点。肿瘤细胞,包括尿路上皮癌细胞,依赖于有氧糖酵解依赖性代谢(瓦博格效应)作为主要的能量来源,以维持其不受控制的生长和增殖。因此,高糖酵解通量依赖于糖酵解相关基因(SRC-3、葡萄糖转运蛋白 1 [GLUT1]、GLUT3、乳酸脱氢酶 A [LDHA]、LDHB、己糖激酶 1 [HK1]、HK2、丙酮酸激酶 M [PKM]和缺氧诱导因子 1-α [HIF-1α])的过度表达,导致丙酮酸、丙氨酸和乳酸的过度产生。同时,膀胱癌代谢显示出戊糖磷酸途径(葡萄糖-6-磷酸脱氢酶 [G6PD])和脂肪酸合成(脂肪酸合酶 [FASN])的基因表达增加,同时 AMP 激活蛋白激酶(AMPK)和三羧酸循环活性降低。此外,膀胱癌中过度激活的 PTEN/PI3K/AKT/mTOR 途径作为有氧糖酵解的中央调节剂,有助于癌症代谢开关和肿瘤细胞增殖。除了糖酵解,糖原代谢途径在膀胱癌的发展中起着重要作用。特别是 GLUT-1 的过度表达、肿瘤抑制因子糖原分支酶 amylo-α-1,6-葡萄糖苷酶、4-α-葡聚糖转移酶(AGL)的丧失,以及肿瘤促进酶糖原磷酸化酶活性的增加,都会损害糖原代谢。葡萄糖摄取增加、正常细胞糖原储存减少和乳酸过度产生是氧化磷酸化减少和不能将葡萄糖再利用到戊糖磷酸和从头脂肪酸合成途径的结果。此外,AGL 的丧失导致丝氨酸羟甲基转移酶-2(SHMT2)的酶活性增加,从而增加丝氨酸和嘌呤环核苷酸的合成,从而支持细胞增殖。深入了解膀胱癌的代谢表型将为靶向治疗策略提供新的机会。