Oesterreich Fernando Carrillo, Herzel Lydia, Straube Korinna, Hujer Katja, Howard Jonathon, Neugebauer Karla M
Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA.
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany.
Cell. 2016 Apr 7;165(2):372-381. doi: 10.1016/j.cell.2016.02.045. Epub 2016 Mar 24.
Protein-coding genes in eukaryotes are transcribed by RNA polymerase II (Pol II) and introns are removed from pre-mRNA by the spliceosome. Understanding the time lag between Pol II progression and splicing could provide mechanistic insights into the regulation of gene expression. Here, we present two single-molecule nascent RNA sequencing methods that directly determine the progress of splicing catalysis as a function of Pol II position. Endogenous genes were analyzed on a global scale in budding yeast. We show that splicing is 50% complete when Pol II is only 45 nt downstream of introns, with the first spliced products observed as introns emerge from Pol II. Perturbations that slow the rate of spliceosome assembly or speed up the rate of transcription caused splicing delays, showing that regulation of both processes determines in vivo splicing profiles. We propose that matched rates streamline the gene expression pathway, while allowing regulation through kinetic competition.
真核生物中的蛋白质编码基因由RNA聚合酶II(Pol II)转录,内含子通过剪接体从前体mRNA中去除。了解Pol II进程与剪接之间的时间间隔可以为基因表达调控提供机制上的见解。在这里,我们提出了两种单分子新生RNA测序方法,它们可以直接确定剪接催化的进程是Pol II位置的函数。在芽殖酵母中对内源基因进行了全局分析。我们发现,当Pol II仅位于内含子下游45个核苷酸时,剪接完成了50%,随着内含子从Pol II中出现,首次观察到剪接产物。减慢剪接体组装速率或加快转录速率的扰动会导致剪接延迟,这表明这两个过程的调控决定了体内剪接图谱。我们提出,匹配的速率简化了基因表达途径,同时允许通过动力学竞争进行调控。