Martin Marivic, Hölscher Theresa, Dragoš Anna, Cooper Vaughn S, Kovács Ákos T
Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
J Bacteriol. 2016 Sep 9;198(19):2564-71. doi: 10.1128/JB.01018-15. Print 2016 Oct 1.
Microbial adaptation is conspicuous in essentially every environment, but the mechanisms of adaptive evolution are poorly understood. Studying evolution in the laboratory under controlled conditions can be a tractable approach, particularly when new, discernible phenotypes evolve rapidly. This is especially the case in the spatially structured environments of biofilms, which promote the occurrence and stability of new, heritable phenotypes. Further, diversity in biofilms can give rise to nascent social interactions among coexisting mutants and enable the study of the emerging field of sociomicrobiology. Here, we review findings from laboratory evolution experiments with either Pseudomonas fluorescens or Burkholderia cenocepacia in spatially structured environments that promote biofilm formation. In both systems, ecotypes with overlapping niches evolve and produce competitive or facilitative interactions that lead to novel community attributes, demonstrating the parallelism of adaptive processes captured in the lab.
微生物适应现象在几乎每一种环境中都很显著,但适应性进化的机制却鲜为人知。在实验室可控条件下研究进化是一种可行的方法,尤其是当新的、可识别的表型迅速进化时。在生物膜的空间结构环境中更是如此,这种环境促进了新的、可遗传表型的出现和稳定性。此外,生物膜中的多样性可导致共存突变体之间出现新生的社会相互作用,并有助于研究社会微生物学这一新兴领域。在这里,我们回顾了在促进生物膜形成的空间结构环境中,用荧光假单胞菌或洋葱伯克霍尔德菌进行实验室进化实验的结果。在这两个系统中,生态位重叠的生态型会进化并产生竞争性或促进性相互作用,从而导致新的群落特征,这证明了实验室中捕获的适应性过程的平行性。