Suppr超能文献

细菌生物膜中微生物相互作用的实验室进化

Laboratory Evolution of Microbial Interactions in Bacterial Biofilms.

作者信息

Martin Marivic, Hölscher Theresa, Dragoš Anna, Cooper Vaughn S, Kovács Ákos T

机构信息

Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.

Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

J Bacteriol. 2016 Sep 9;198(19):2564-71. doi: 10.1128/JB.01018-15. Print 2016 Oct 1.

Abstract

Microbial adaptation is conspicuous in essentially every environment, but the mechanisms of adaptive evolution are poorly understood. Studying evolution in the laboratory under controlled conditions can be a tractable approach, particularly when new, discernible phenotypes evolve rapidly. This is especially the case in the spatially structured environments of biofilms, which promote the occurrence and stability of new, heritable phenotypes. Further, diversity in biofilms can give rise to nascent social interactions among coexisting mutants and enable the study of the emerging field of sociomicrobiology. Here, we review findings from laboratory evolution experiments with either Pseudomonas fluorescens or Burkholderia cenocepacia in spatially structured environments that promote biofilm formation. In both systems, ecotypes with overlapping niches evolve and produce competitive or facilitative interactions that lead to novel community attributes, demonstrating the parallelism of adaptive processes captured in the lab.

摘要

微生物适应现象在几乎每一种环境中都很显著,但适应性进化的机制却鲜为人知。在实验室可控条件下研究进化是一种可行的方法,尤其是当新的、可识别的表型迅速进化时。在生物膜的空间结构环境中更是如此,这种环境促进了新的、可遗传表型的出现和稳定性。此外,生物膜中的多样性可导致共存突变体之间出现新生的社会相互作用,并有助于研究社会微生物学这一新兴领域。在这里,我们回顾了在促进生物膜形成的空间结构环境中,用荧光假单胞菌或洋葱伯克霍尔德菌进行实验室进化实验的结果。在这两个系统中,生态位重叠的生态型会进化并产生竞争性或促进性相互作用,从而导致新的群落特征,这证明了实验室中捕获的适应性过程的平行性。

相似文献

1
Laboratory Evolution of Microbial Interactions in Bacterial Biofilms.
J Bacteriol. 2016 Sep 9;198(19):2564-71. doi: 10.1128/JB.01018-15. Print 2016 Oct 1.
2
Character displacement and the evolution of niche complementarity in a model biofilm community.
Evolution. 2015 Feb;69(2):283-93. doi: 10.1111/evo.12581. Epub 2015 Jan 19.
3
Parallel evolution of small colony variants in Burkholderia cenocepacia biofilms.
Genomics. 2014 Dec;104(6 Pt A):447-52. doi: 10.1016/j.ygeno.2014.09.007. Epub 2014 Sep 28.
4
Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):E250-9. doi: 10.1073/pnas.1207025110. Epub 2012 Dec 27.
5
Fitness trade-offs modify community composition under contrasting disturbance regimes in Pseudomonas fluorescens microcosms.
Evolution. 2009 Nov;63(11):3031-7. doi: 10.1111/j.1558-5646.2009.00758.x. Epub 2009 Jun 22.
6
Spatial distributions of Pseudomonas fluorescens colony variants in mixed-culture biofilms.
BMC Microbiol. 2013 Jul 28;13:175. doi: 10.1186/1471-2180-13-175.
7
Ecological succession in long-term experimentally evolved biofilms produces synergistic communities.
ISME J. 2011 Mar;5(3):369-78. doi: 10.1038/ismej.2010.136. Epub 2010 Sep 2.

引用本文的文献

2
Gene age and genome organization in and .
Front Microbiol. 2025 Jun 18;16:1512923. doi: 10.3389/fmicb.2025.1512923. eCollection 2025.
3
Host-Associated Biofilms: and Other Symbiotic Bacteria Within the Vibrionaceae.
Microorganisms. 2025 May 27;13(6):1223. doi: 10.3390/microorganisms13061223.
5
Evolution and stability of complex microbial communities driven by trade-offs.
Mol Syst Biol. 2024 Sep;20(9):997-1005. doi: 10.1038/s44320-024-00051-8. Epub 2024 Jul 3.
6
Colony morphotype diversification as a signature of bacterial evolution.
Microlife. 2023 Oct 10;4:uqad041. doi: 10.1093/femsml/uqad041. eCollection 2023.
7
Competitive interactions facilitate resistance development against antimicrobials.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0115523. doi: 10.1128/aem.01155-23. Epub 2023 Oct 11.
10
Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance.
Commun Biol. 2023 Mar 16;6(1):275. doi: 10.1038/s42003-023-04601-y.

本文引用的文献

1
Experimental evolution in biofilm populations.
FEMS Microbiol Rev. 2016 May;40(3):373-97. doi: 10.1093/femsre/fuw002. Epub 2016 Feb 18.
2
Rapid radiation in bacteria leads to a division of labour.
Nat Commun. 2016 Feb 8;7:10508. doi: 10.1038/ncomms10508.
4
Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.
Appl Environ Microbiol. 2015 Dec;81(24):8414-26. doi: 10.1128/AEM.02628-15. Epub 2015 Oct 2.
5
Long-term social dynamics drive loss of function in pathogenic bacteria.
Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10756-61. doi: 10.1073/pnas.1508324112. Epub 2015 Aug 3.
6
Socially mediated induction and suppression of antibiosis during bacterial coexistence.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11054-9. doi: 10.1073/pnas.1504076112. Epub 2015 Jul 27.
7
Biofilm Formation As a Response to Ecological Competition.
PLoS Biol. 2015 Jul 9;13(7):e1002191. doi: 10.1371/journal.pbio.1002191. eCollection 2015 Jul.
8
Living in the matrix: assembly and control of Vibrio cholerae biofilms.
Nat Rev Microbiol. 2015 May;13(5):255-68. doi: 10.1038/nrmicro3433.
9
There and back again: consequences of biofilm specialization under selection for dispersal.
Front Genet. 2015 Feb 11;6:18. doi: 10.3389/fgene.2015.00018. eCollection 2015.
10
Impact of spatial distribution on the development of mutualism in microbes.
Front Microbiol. 2014 Nov 24;5:649. doi: 10.3389/fmicb.2014.00649. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验