Suppr超能文献

心肌损伤后形成的心外膜来源细胞表现出吞噬活性,可进行体内标记和追踪。

Epicardium-Derived Cells Formed After Myocardial Injury Display Phagocytic Activity Permitting In Vivo Labeling and Tracking.

作者信息

Ding Zhaoping, Temme Sebastian, Quast Christine, Friebe Daniela, Jacoby Christoph, Zanger Klaus, Bidmon Hans-Jürgen, Grapentin Christoph, Schubert Rolf, Flögel Ulrich, Schrader Jürgen

机构信息

Department of Molecular Cardiology, Heinrich Heine University, Duesseldorf, Germany.

Center of Anatomy and Brain Research, Department of Anatomy I, Heinrich Heine University, Duesseldorf, Germany.

出版信息

Stem Cells Transl Med. 2016 May;5(5):639-50. doi: 10.5966/sctm.2015-0159. Epub 2016 Apr 7.

Abstract

UNLABELLED

Epicardium-derived cells (EPDCs) cover the heart surface and can function as a source of both progenitor cells and trophic factors for cardiac repair. Currently, EPDCs cannot be conveniently labeled in vivo to permit imaging and cell tracking. EPDCs formed after myocardial infarction (MI) preferentially take up a perfluorocarbon-containing nanoemulsion (PFC-NE; 130 ± 32 nm) injected 3 days after injury, as measured by (19)F-magnetic resonance imaging ((19)F-MRI). Flow cytometry, immune electron microscopy, and green fluorescent protein (GFP)-transgenic rats (only immune cells, but not epicardial cells, are GFP(+)) demonstrated that PFC-containing EPDCs are nonhematopoietic (CD45(-)/CD11b(-)) but stain positive for markers of mesenchymal stem cells such as platelet-derived growth factor receptor α (PDGFR-α) CD73, CD105, and CD90. When rhodamine-coupled PFC-NE was used, we found that ρ(+) vessel-like structures formed within the infarcted myocardium, comprising approximately 10% of all large vessels positive for smooth muscle actin (SM-actin). The epicardial cell layer, positive for Wilms' tumor 1 (WT-1), PDGFR-α, or KI-67, was shown to be well capillarized (293 ± 78 capillaries per mm(2)), including fenestrated endothelium. Freshly isolated EPDCs were positive for WT-1, GATA-4, KI-67, and FLK-1 (75%), PDGFR-α (50%), and SM-actin (28%) and also exhibited a high capacity for nanoparticle and cell debris uptake. This study demonstrates that EPDCs formed after MI display strong endocytic activity to take up i.v.-injected labeled nanoemulsions. This feature permitted in vivo labeling and tracking of EPDCs, demonstrating their role in myo- and vasculogenesis. The newly discovered endocytic activity permits in vivo imaging of EPDCs with (19)F-MRI and may be used for the liposomal delivery of substances to further study their reparative potential.

SIGNIFICANCE

The present study reports that epicardium-derived cells (EPDCs) formed after myocardial infarction can specifically endocytose nanoparticles in vivo and in vitro. This novel feature permitted in vivo targeting of EPDCs with either a perfluorocarbon-containing or rhodamine-conjugated nanoemulsion to track migration and fate decision of EPDC with (19)F-magnetic resonance imaging and fluorescence microscopy. The liposomal nanoemulsions used in the present study may be useful in the future as a nanomedical device for the delivery of substances to direct cell fate of EPDCs.

摘要

未标记

心外膜衍生细胞(EPDCs)覆盖心脏表面,可作为祖细胞和营养因子的来源,用于心脏修复。目前,EPDCs无法在体内方便地标记以进行成像和细胞追踪。心肌梗死(MI)后形成的EPDCs优先摄取损伤后3天注射的含全氟化碳纳米乳剂(PFC-NE;130±32nm),通过(19)F磁共振成像((19)F-MRI)测量。流式细胞术、免疫电子显微镜和绿色荧光蛋白(GFP)转基因大鼠(只有免疫细胞,而非心外膜细胞,是GFP(+))表明,含PFC的EPDCs是非造血的(CD45(-)/CD11b(-)),但对间充质干细胞标志物如血小板衍生生长因子受体α(PDGFR-α)、CD73、CD105和CD90呈阳性染色。当使用罗丹明偶联的PFC-NE时,我们发现在梗死心肌内形成了ρ(+)血管样结构,约占所有平滑肌肌动蛋白(SM-肌动蛋白)阳性大血管的10%。对威尔姆斯瘤1(WT-1)、PDGFR-α或KI-67呈阳性的心外膜细胞层显示有良好的毛细血管化(每平方毫米293±78根毛细血管),包括有窗孔的内皮。新鲜分离的EPDCs对WT-1、GATA-4、KI-67和FLK-1(75%)、PDGFR-α(50%)和SM-肌动蛋白(28%)呈阳性,并且对纳米颗粒和细胞碎片的摄取能力也很强。本研究表明,MI后形成的EPDCs表现出强大的内吞活性,可摄取静脉注射的标记纳米乳剂。这一特性允许在体内标记和追踪EPDCs,证明了它们在心肌生成和血管生成中的作用。新发现的内吞活性允许用(19)F-MRI对EPDCs进行体内成像,并可用于脂质体物质递送,以进一步研究它们的修复潜力。

意义

本研究报告称,心肌梗死后形成的心外膜衍生细胞(EPDCs)在体内和体外都能特异性地内吞纳米颗粒。这一新颖特性允许用含全氟化碳或罗丹明偶联的纳米乳剂在体内靶向EPDCs,以通过(19)F磁共振成像和荧光显微镜追踪EPDC的迁移和命运决定。本研究中使用的脂质体纳米乳剂未来可能作为一种纳米医疗设备用于物质递送,以指导EPDCs的细胞命运。

相似文献

1
Epicardium-Derived Cells Formed After Myocardial Injury Display Phagocytic Activity Permitting In Vivo Labeling and Tracking.
Stem Cells Transl Med. 2016 May;5(5):639-50. doi: 10.5966/sctm.2015-0159. Epub 2016 Apr 7.
3
Cardiac-specific overexpression of human stem cell factor promotes epicardial activation and arteriogenesis after myocardial infarction.
Circ Heart Fail. 2014 Sep;7(5):831-42. doi: 10.1161/CIRCHEARTFAILURE.114.001423. Epub 2014 Aug 8.
5
Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar.
J Am Coll Cardiol. 2015 May 19;65(19):2057-66. doi: 10.1016/j.jacc.2015.03.520.
9
Human fetal and adult epicardial-derived cells: a novel model to study their activation.
Stem Cell Res Ther. 2016 Nov 29;7(1):174. doi: 10.1186/s13287-016-0434-9.
10

引用本文的文献

1
Imaging of Thromboinflammation by Multispectral F MRI.
Int J Mol Sci. 2025 Mar 10;26(6):2462. doi: 10.3390/ijms26062462.
2
Sfrp1 as a Pivotal Paracrine Factor in the Trained Pericardial Stem Cells that Foster Reparative Activity.
Stem Cells Transl Med. 2024 Feb 14;13(2):137-150. doi: 10.1093/stcltm/szad075.
3
A Toolbox to Investigate the Impact of Impaired Oxygen Delivery in Experimental Disease Models.
Front Med (Lausanne). 2022 May 16;9:869372. doi: 10.3389/fmed.2022.869372. eCollection 2022.
5
Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium.
Front Cardiovasc Med. 2021 Sep 23;8:750243. doi: 10.3389/fcvm.2021.750243. eCollection 2021.
8
Nanotechnology, an alternative with promising prospects and advantages for the treatment of cardiovascular diseases.
Int J Nanomedicine. 2018 Nov 9;13:7349-7362. doi: 10.2147/IJN.S179678. eCollection 2018.
9
Dissociation of F and fluorescence signal upon cellular uptake of dual-contrast perfluorocarbon nanoemulsions.
MAGMA. 2019 Feb;32(1):133-145. doi: 10.1007/s10334-018-0723-7. Epub 2018 Nov 29.

本文引用的文献

2
Monocyte imaging after myocardial infarction with 19F MRI at 3 T: a pilot study in explanted porcine hearts.
Eur Heart J Cardiovasc Imaging. 2015 Jun;16(6):612-20. doi: 10.1093/ehjci/jev008. Epub 2015 Mar 1.
3
Liposomes as nanomedical devices.
Int J Nanomedicine. 2015 Feb 2;10:975-99. doi: 10.2147/IJN.S68861. eCollection 2015.
5
Tracking of stem cells in vivo for cardiovascular applications.
J Cardiovasc Magn Reson. 2014 Jan 10;16(1):7. doi: 10.1186/1532-429X-16-7.
7
Visualization of immune cell infiltration in experimental viral myocarditis by (19)F MRI in vivo.
MAGMA. 2014 Feb;27(1):101-6. doi: 10.1007/s10334-013-0391-6. Epub 2013 Jul 4.
8
The role of VE-cadherin in vascular morphogenesis and permeability control.
Prog Mol Biol Transl Sci. 2013;116:119-44. doi: 10.1016/B978-0-12-394311-8.00006-6.
9
Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium.
Dev Biol. 2013 Apr 15;376(2):136-49. doi: 10.1016/j.ydbio.2013.01.026. Epub 2013 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验