Karnewar Santosh, Vasamsetti Sathish Babu, Gopoju Raja, Kanugula Anantha Koteswararao, Ganji Sai Krishna, Prabhakar Sripadi, Rangaraj Nandini, Tupperwar Nitin, Kumar Jerald Mahesh, Kotamraju Srigiridhar
Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India.
Academy of Scientific and Innovative Research, Training and Development Complex, Chennai, India.
Sci Rep. 2016 Apr 11;6:24108. doi: 10.1038/srep24108.
Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.
线粒体靶向化合物正在成为一类新型药物,这类药物有可能改变线粒体功能障碍起关键作用的疾病的病理生理学。我们合成了一种新型线粒体靶向七叶亭(Mito-Esc),旨在研究其在氧化应激诱导的内皮细胞死亡以及血管紧张素(Ang)-II诱导的载脂蛋白E基因敲除(ApoE(-/-))小鼠动脉粥样硬化过程中的作用。Mito-Esc而非天然七叶亭处理通过增强AMPK介导的内皮型一氧化氮合酶(eNOS)磷酸化来增加一氧化氮(NO)生成,从而显著抑制过氧化氢(H2O2)和Ang-II诱导的人主动脉内皮细胞死亡。虽然L-NAME(一氧化氮合酶抑制剂)显著消除了Mito-Esc介导的保护作用,但化合物c(AMPK抑制剂)显著降低了Mito-Esc介导的NO生成增加。值得注意的是,Mito-Esc通过激活AMPK增强沉默信息调节因子2相关酶3(SIRT3)的表达来促进线粒体生物合成;并恢复了H2O2诱导的线粒体呼吸抑制。小干扰RNA(siSIRT3)处理不仅完全逆转了Mito-Esc介导的线粒体生物合成标志物表达,还导致了内皮细胞死亡。此外,给ApoE(-/-)小鼠施用Mito-Esc可大大减轻Ang-II诱导的动脉粥样斑块形成、单核细胞浸润和血清促炎细胞因子水平。我们得出结论,Mito-Esc优先被线粒体摄取,并通过AMPK调节NO生成来维持氧化应激期间内皮细胞的存活。此外,Mito-Esc诱导的SIRT3在介导线粒体生物合成中起关键作用,可能有助于其抗动脉粥样硬化作用。