Suppr超能文献

S-腺苷-L-甲硫氨酸修饰丙型肝炎病毒表达细胞中的抗氧化酶、谷胱甘肽生物合成及甲硫氨酸腺苷转移酶-1/2。

S-adenosyl-L-methionine modifies antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells.

作者信息

Lozano-Sepulveda Sonia Amelia, Bautista-Osorio Eduardo, Merino-Mascorro Jose Angel, Varela-Rey Marta, Muñoz-Espinosa Linda Elsa, Cordero-Perez Paula, Martinez-Chantar María Luz, Rivas-Estilla Ana Maria

机构信息

Sonia Amelia Lozano-Sepulveda, Eduardo Bautista-Osorio, Jose Angel Merino-Mascorro, Ana Maria Rivas-Estilla, Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 64460, Mexico.

出版信息

World J Gastroenterol. 2016 Apr 14;22(14):3746-57. doi: 10.3748/wjg.v22.i14.3746.

Abstract

AIM

To elucidate the mechanism(s) by which S-adenosyl-L-methionine (SAM) decreases hepatitis C virus (HCV) expression.

METHODS

We examined the effects of SAM on viral expression using an HCV subgenomic replicon cell culture system. Huh7 HCV-replicon cells were treated with 1 mmol/L SAM for different times (24-72 h), then total RNA and proteins were isolated. cDNA was synthesized and real time-PCR was achieved to quantify HCV-RNA, superoxide dismutase 1 and 2 (SOD-1, SOD-2) catalase, thioredoxin 1, methionine adenosyltransferase 1A and 2A (MAT1A, MAT2A) expression, and GAPDH and RPS18 as endogenous genes. Expression of cellular and viral protein was evaluated by western-blot analysis using antibodies vs HCV-NS5A, SOD-1, SOD-2, catalase, thioredoxin-1, MAT1A, MAT2A, GAPDH and actin. Total glutathione levels were measured at different times by Ellman's recycling method (0-24 h). Reactive oxidative species (ROS) levels were quantified by the dichlorofluorescein assay (0-48 h); Pyrrolidin dithiocarbamate (PDTC) was tested as an antioxidant control and H2O2 as a positive oxidant agent.

RESULTS

SAM exposition decreased HCV-RNA levels 50%-70% compared to non-treated controls (24-72 h). SAM induced a synergic antiviral effect with standard IFN treatment but it was independent of IFN signaling. In addition, 1 mmol/L SAM exposition did not modify viral RNA stability, but it needs cellular translation machinery in order to decrease HCV expression. Total glutathione levels increased upon SAM treatment in HCV-replicon cells. Transcriptional antioxidant enzyme expression (SOD-1, SOD-2 and thioredoxin-1) was increased at different times but interestingly, there was no significant change in ROS levels upon SAM treatment, contrary to what was detected with PDTC treatment, where an average 40% reduction was observed in exposed cells. There was a turnover from MAT1A/MAT2A, since MAT1A expression was increased (2.5 fold-times at 48 h) and MAT2A was diminished (from 24 h) upon SAM treatment at both the transcriptional and translational level.

CONCLUSION

A likely mechanism(s) by which SAM diminish HCV expression could involve modulating antioxidant enzymes, restoring biosynthesis of glutathione and switching MAT1/MAT2 turnover in HCV expressing cells.

摘要

目的

阐明S-腺苷-L-甲硫氨酸(SAM)降低丙型肝炎病毒(HCV)表达的机制。

方法

我们使用HCV亚基因组复制子细胞培养系统研究了SAM对病毒表达的影响。用1 mmol/L SAM处理Huh7 HCV复制子细胞不同时间(24 - 72小时),然后分离总RNA和蛋白质。合成cDNA并进行实时PCR以定量HCV-RNA、超氧化物歧化酶1和2(SOD-1、SOD-2)、过氧化氢酶、硫氧还蛋白1、甲硫氨酸腺苷转移酶1A和2A(MAT1A、MAT2A)的表达,以及作为内参基因的GAPDH和RPS18。通过使用针对HCV-NS5A、SOD-1、SOD-2、过氧化氢酶、硫氧还蛋白-1、MAT1A、MAT2A、GAPDH和肌动蛋白的抗体进行蛋白质印迹分析来评估细胞和病毒蛋白的表达。在不同时间通过Ellman循环法(0 - 24小时)测量总谷胱甘肽水平。通过二氯荧光素测定法(0 - 48小时)定量活性氧化物质(ROS)水平;测试吡咯烷二硫代氨基甲酸盐(PDTC)作为抗氧化剂对照,H2O2作为阳性氧化剂。

结果

与未处理的对照相比,SAM处理2至3天后,HCV-RNA水平降低了50%-70%(24 - 72小时)。SAM与标准IFN治疗诱导协同抗病毒作用,但它不依赖于IFN信号传导。此外,1 mmol/L SAM处理不会改变病毒RNA稳定性,但它需要细胞翻译机制来降低HCV表达。在HCV复制子细胞中,SAM处理后总谷胱甘肽水平增加。转录抗氧化酶表达(SOD-1、SOD-2和硫氧还蛋白-1)在不同时间增加,但有趣的是,与PDTC处理检测到的情况相反,SAM处理后ROS水平没有显著变化,PDTC处理后在暴露细胞中平均观察到40%的降低。SAM处理后MAT1A/MAT2A发生了转变,因为在转录和翻译水平上,SAM处理后MAT1A表达增加(48小时时增加2.5倍),而MAT2A减少(从24小时开始)。

结论

SAM降低HCV表达的可能机制可能涉及调节抗氧化酶、恢复谷胱甘肽的生物合成以及在HCV表达细胞中转换MAT1/MAT2的转变。

相似文献

2
Cu/Zn superoxide dismutase (SOD1) induction is implicated in the antioxidative and antiviral activity of acetylsalicylic acid in HCV-expressing cells.
Am J Physiol Gastrointest Liver Physiol. 2012 Jun 1;302(11):G1264-73. doi: 10.1152/ajpgi.00237.2011. Epub 2012 Mar 22.
3
6
Identification of three interferon-inducible cellular enzymes that inhibit the replication of hepatitis C virus.
J Virol. 2008 Feb;82(4):1665-78. doi: 10.1128/JVI.02113-07. Epub 2007 Dec 12.
7
mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine.
J Biol Chem. 2022 Jul;298(7):102084. doi: 10.1016/j.jbc.2022.102084. Epub 2022 May 27.
9
[Antiviral activities of ISG20 against hepatitis C virus].
Zhonghua Gan Zang Bing Za Zhi. 2013 Jan;21(1):33-7. doi: 10.3760/cma.j.issn.1007-3418.2013.01.010.
10
Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells.
Gastroenterology. 2007 Jul;133(1):207-18. doi: 10.1053/j.gastro.2007.03.114. Epub 2007 Apr 11.

引用本文的文献

3
The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review.
Animals (Basel). 2023 Sep 18;13(18):2949. doi: 10.3390/ani13182949.
4
5
Ablation of long noncoding RNA MALAT1 activates antioxidant pathway and alleviates sepsis in mice.
Redox Biol. 2022 Aug;54:102377. doi: 10.1016/j.redox.2022.102377. Epub 2022 Jun 18.
6
Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication.
Signal Transduct Target Ther. 2020 Dec 4;5(1):280. doi: 10.1038/s41392-020-00349-7.
9
and antioxidative and hepatoprotective activity of aqueous extract of Cortex Dictamni.
World J Gastroenterol. 2017 Apr 28;23(16):2912-2927. doi: 10.3748/wjg.v23.i16.2912.

本文引用的文献

2
Analysis of boceprevir resistance associated amino acid variants (RAVs) in two phase 3 boceprevir clinical studies.
Virology. 2013 Sep;444(1-2):329-36. doi: 10.1016/j.virol.2013.06.029. Epub 2013 Jul 19.
3
HCV and oxidative stress in the liver.
Viruses. 2013 Jan 28;5(2):439-69. doi: 10.3390/v5020439.
4
S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility.
J Hepatol. 2012 Nov;57(5):1097-109. doi: 10.1016/j.jhep.2012.04.041. Epub 2012 May 30.
5
Cu/Zn superoxide dismutase (SOD1) induction is implicated in the antioxidative and antiviral activity of acetylsalicylic acid in HCV-expressing cells.
Am J Physiol Gastrointest Liver Physiol. 2012 Jun 1;302(11):G1264-73. doi: 10.1152/ajpgi.00237.2011. Epub 2012 Mar 22.
7
S-adenosyl methionine improves early viral responses and interferon-stimulated gene induction in hepatitis C nonresponders.
Gastroenterology. 2011 Mar;140(3):830-9. doi: 10.1053/j.gastro.2010.09.010. Epub 2010 Sep 17.
9
Hepatitis C.
Semin Liver Dis. 2009 Feb;29(1):53-65. doi: 10.1055/s-0029-1192055. Epub 2009 Feb 23.
10
The global burden of hepatitis C.
Liver Int. 2009 Jan;29 Suppl 1:74-81. doi: 10.1111/j.1478-3231.2008.01934.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验