Suppr超能文献

逆转癌症中的T细胞功能障碍与耗竭

Reversing T-cell Dysfunction and Exhaustion in Cancer.

作者信息

Zarour Hassane M

机构信息

Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.

出版信息

Clin Cancer Res. 2016 Apr 15;22(8):1856-64. doi: 10.1158/1078-0432.CCR-15-1849.

Abstract

In the context of chronic antigen exposure in chronic viral infections and cancer, T cells become exhausted/dysfunctional. These exhausted T cells exhibit defective proliferative capacities and cytokine production, but are not totally inert and may exert lytic functions. Importantly, exhausted T cells upregulate multiple inhibitory receptors/immune checkpoints that bind to their ligands expressed by tumor cells and antigen-presenting cells in the tumor microenvironment (TME). Immune checkpoint blockades with anti-CTL antigen 4 (CTLA-4) and/or anti-programmed death 1 (PD-1) mAbs successfully reinvigorate tumor-infiltrating T lymphocytes and provide persistent clinical benefits to a large number of patients with advanced cancer. This great and long-awaited success for the immunotherapy of cancer has infused considerable enthusiasm in the field of oncology and fostered the development of combinatorial strategies to target the multiple mechanisms of tumor-induced T-cell dysfunction. Here, we review the critical immunoregulatory mechanisms driving T-cell exhaustion in the TME. We also discuss the development of promising combinatorial immunotherapies to counteract the mechanisms of tumor-induced T-cell dysfunction to improve the clinical efficacy of current immune checkpoint blockades. As our understanding of the mechanisms supporting tumor-induced T-cell dysfunction improves based upon preclinical and clinical studies, we expect that novel combinatorial immunotherapies will emerge to improve the clinical outcome of patients with advanced cancers.

摘要

在慢性病毒感染和癌症中慢性抗原暴露的背景下,T细胞会变得耗竭/功能失调。这些耗竭的T细胞表现出增殖能力和细胞因子产生缺陷,但并非完全惰性,可能发挥裂解功能。重要的是,耗竭的T细胞上调多种抑制性受体/免疫检查点,这些受体与肿瘤微环境(TME)中肿瘤细胞和抗原呈递细胞表达的配体结合。用抗细胞毒性T淋巴细胞相关抗原4(CTLA-4)和/或抗程序性死亡1(PD-1)单克隆抗体进行免疫检查点阻断成功地使肿瘤浸润性T淋巴细胞恢复活力,并为大量晚期癌症患者提供持续的临床益处。癌症免疫治疗这一巨大且期待已久的成功在肿瘤学领域注入了相当大的热情,并促进了针对肿瘤诱导的T细胞功能障碍多种机制的联合策略的发展。在此,我们综述了在肿瘤微环境中驱动T细胞耗竭的关键免疫调节机制。我们还讨论了有前景的联合免疫疗法的发展,以对抗肿瘤诱导的T细胞功能障碍机制,从而提高当前免疫检查点阻断的临床疗效。随着我们基于临床前和临床研究对支持肿瘤诱导的T细胞功能障碍机制的理解不断提高,我们期望会出现新的联合免疫疗法来改善晚期癌症患者的临床结局。

相似文献

1
Reversing T-cell Dysfunction and Exhaustion in Cancer.
Clin Cancer Res. 2016 Apr 15;22(8):1856-64. doi: 10.1158/1078-0432.CCR-15-1849.
2
Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies.
Cancer Immunol Res. 2015 Jun;3(6):689-701. doi: 10.1158/2326-6066.CIR-14-0171. Epub 2015 Jan 22.
3
Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
Clin Cancer Res. 2013 Oct 15;19(20):5626-35. doi: 10.1158/1078-0432.CCR-13-0545. Epub 2013 Aug 27.
4
A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
Eur Urol. 2015 Aug;68(2):267-79. doi: 10.1016/j.eururo.2015.02.032. Epub 2015 Mar 29.
5
The evolution of checkpoint blockade as a cancer therapy: what's here, what's next?
Curr Opin Immunol. 2015 Apr;33:23-35. doi: 10.1016/j.coi.2015.01.006. Epub 2015 Jan 23.
6
Targeting novel inhibitory receptors in cancer immunotherapy.
Semin Immunol. 2020 Jun;49:101436. doi: 10.1016/j.smim.2020.101436. Epub 2020 Dec 4.
8
Beyond CTLA-4 and PD-1: Orphan nuclear receptor NR2F6 as T cell signaling switch and emerging target in cancer immunotherapy.
Immunol Lett. 2016 Oct;178:31-6. doi: 10.1016/j.imlet.2016.03.007. Epub 2016 Mar 15.
10
Immune Checkpoint Therapies in Prostate Cancer.
Cancer J. 2016 Mar-Apr;22(2):117-20. doi: 10.1097/PPO.0000000000000176.

引用本文的文献

2
The Functional Adaptability of Hyporesponsive T Cells and its Impact on Transplant Outcomes.
Curr Transplant Rep. 2023 Sep;10(3):147-152. doi: 10.1007/s40472-023-00398-1. Epub 2023 May 31.
3
Pik3ip1/TrIP Regulation of PI3K Restricts CD8 T Cell Anti-Tumor Immunity.
bioRxiv. 2025 Jul 15:2025.07.10.664200. doi: 10.1101/2025.07.10.664200.
4
The role of exosomes in bladder cancer immunotherapy.
J Natl Cancer Cent. 2025 May 2;5(3):252-266. doi: 10.1016/j.jncc.2025.04.001. eCollection 2025 Jun.
5
Tumor-infiltrating lymphocytes in melanoma: diagnostic and prognostic implications from biopsy to circulation.
J Liq Biopsy. 2025 Jun 28;9:100308. doi: 10.1016/j.jlb.2025.100308. eCollection 2025 Sep.
6
T cells in cancer: mechanistic insights and therapeutic advances.
Biomark Res. 2025 Jul 15;13(1):97. doi: 10.1186/s40364-025-00807-w.
9
Elucidating DNA Damage-Dependent Immune System Activation.
Int J Mol Sci. 2025 Jun 18;26(12):5849. doi: 10.3390/ijms26125849.

本文引用的文献

1
Dendritic Cell-Based Immunotherapy: State of the Art and Beyond.
Clin Cancer Res. 2016 Apr 15;22(8):1897-906. doi: 10.1158/1078-0432.CCR-15-1399.
2
Targeting the Heterogeneity of Cancer with Individualized Neoepitope Vaccines.
Clin Cancer Res. 2016 Apr 15;22(8):1885-96. doi: 10.1158/1078-0432.CCR-15-1509.
3
Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy.
Clin Cancer Res. 2016 Apr 15;22(8):1875-84. doi: 10.1158/1078-0432.CCR-15-1433.
4
Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy.
Cancer Discov. 2016 Feb;6(2):202-16. doi: 10.1158/2159-8290.CD-15-0283. Epub 2015 Dec 8.
5
Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction.
Nat Immunol. 2016 Jan;17(1):95-103. doi: 10.1038/ni.3313. Epub 2015 Nov 2.
6
TIGIT predominantly regulates the immune response via regulatory T cells.
J Clin Invest. 2015 Nov 2;125(11):4053-62. doi: 10.1172/JCI81187. Epub 2015 Sep 28.
7
Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner.
Cell Rep. 2015 Oct 13;13(2):412-24. doi: 10.1016/j.celrep.2015.08.077. Epub 2015 Sep 24.
8
Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses.
Cell. 2015 Sep 10;162(6):1217-28. doi: 10.1016/j.cell.2015.08.012. Epub 2015 Aug 27.
9
Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression.
Cell. 2015 Sep 10;162(6):1229-41. doi: 10.1016/j.cell.2015.08.016. Epub 2015 Aug 27.
10
The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment.
Semin Oncol. 2015 Aug;42(4):663-71. doi: 10.1053/j.seminoncol.2015.05.011. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验