Suppr超能文献

线粒体DNA复制机制在线粒体DNA诱变、衰老及衰老相关疾病中的作用。

Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases.

作者信息

DeBalsi Karen L, Hoff Kirsten E, Copeland William C

机构信息

Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.

Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.

出版信息

Ageing Res Rev. 2017 Jan;33:89-104. doi: 10.1016/j.arr.2016.04.006. Epub 2016 Apr 30.

Abstract

As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined.

摘要

作为细胞生物能量学的调节因子和内源性活性氧(ROS)的主要来源,功能失调的线粒体数十年来一直被认为与衰老及年龄相关疾病的发生过程有关。线粒体DNA(mtDNA)由核编码的mtDNA聚合酶γ(Pol γ)和其他几种相关蛋白进行复制和修复,这些蛋白共同构成了mtDNA复制机制。在此,我们综述了相关证据,即这种复制机制所导致的错误以及未能修复这些mtDNA错误会引发mtDNA突变。mtDNA突变的克隆性扩增会导致线粒体功能障碍,如电子传递链(ETC)酶活性降低和细胞呼吸受损。我们探讨了相关文献,这些文献表明线粒体功能障碍与线粒体动力学改变共同作用,是衰老和年龄相关疾病背后的主要驱动力。此外,还研究了改善线粒体功能和减轻衰老症状的干预措施。

相似文献

1
Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases.
Ageing Res Rev. 2017 Jan;33:89-104. doi: 10.1016/j.arr.2016.04.006. Epub 2016 Apr 30.
2
Mitochondrial function and mitochondrial DNA maintenance with advancing age.
Biogerontology. 2014;15(5):417-38. doi: 10.1007/s10522-014-9515-2. Epub 2014 Jul 12.
4
Somatic mitochondrial DNA mutations in mammalian aging.
Annu Rev Biochem. 2010;79:683-706. doi: 10.1146/annurev-biochem-060408-093701.
5
The mtDNA mutation spectrum in the PolG mutator mouse reveals germline and somatic selection.
BMC Genom Data. 2021 Nov 26;22(1):52. doi: 10.1186/s12863-021-01005-x.
6
The mitochondrial DNA polymerase in health and disease.
Subcell Biochem. 2010;50:211-22. doi: 10.1007/978-90-481-3471-7_11.
7
Mitochondrial DNA damage and its consequences for mitochondrial gene expression.
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):979-91. doi: 10.1016/j.bbagrm.2012.06.002. Epub 2012 Jun 19.
8
Mitochondrial genome maintenance in health and disease.
DNA Repair (Amst). 2014 Jul;19:190-8. doi: 10.1016/j.dnarep.2014.03.010. Epub 2014 Apr 26.

引用本文的文献

3
Microvesicles carrying EV71 virions cross BBB through endocytic pathway to induce brain injury.
Cell Commun Signal. 2025 Apr 14;23(1):183. doi: 10.1186/s12964-025-02195-y.
5
Mitochondrial diseases: from molecular mechanisms to therapeutic advances.
Signal Transduct Target Ther. 2025 Jan 10;10(1):9. doi: 10.1038/s41392-024-02044-3.
6
Ethnogenetic analysis reveals the Bronze Age genetic affiliation of Yashkuns with West Eurasians.
Sci Rep. 2024 Dec 28;14(1):31414. doi: 10.1038/s41598-024-83136-6.
7
Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes.
Biogerontology. 2024 Dec 27;26(1):33. doi: 10.1007/s10522-024-10175-x.
9
Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes.
Int J Mol Sci. 2024 Dec 6;25(23):13144. doi: 10.3390/ijms252313144.

本文引用的文献

1
Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.
Skelet Muscle. 2016 Jan 31;6:7. doi: 10.1186/s13395-016-0075-9. eCollection 2016.
2
Somatic mtDNA variation is an important component of Parkinson's disease.
Neurobiol Aging. 2016 Feb;38:217.e1-217.e6. doi: 10.1016/j.neurobiolaging.2015.10.036. Epub 2015 Nov 6.
3
Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle.
FASEB J. 2016 Jan;30(1):13-22. doi: 10.1096/fj.15-276337. Epub 2015 Sep 14.
4
Mitochondria: A Therapeutic Target for Parkinson's Disease?
Int J Mol Sci. 2015 Sep 1;16(9):20704-30. doi: 10.3390/ijms160920704.
5
Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element.
Nucleic Acids Res. 2015 Oct 30;43(19):9262-75. doi: 10.1093/nar/gkv804. Epub 2015 Aug 7.
6
Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9334-9. doi: 10.1073/pnas.1503653112. Epub 2015 Jul 10.
8
RNASEH1 Mutations Impair mtDNA Replication and Cause Adult-Onset Mitochondrial Encephalomyopathy.
Am J Hum Genet. 2015 Jul 2;97(1):186-93. doi: 10.1016/j.ajhg.2015.05.013. Epub 2015 Jun 18.
9
Mitochondrial DNA mutations in neurodegeneration.
Biochim Biophys Acta. 2015 Nov;1847(11):1401-11. doi: 10.1016/j.bbabio.2015.05.015. Epub 2015 May 23.
10
Dietary restriction, mitochondrial function and aging: from yeast to humans.
Biochim Biophys Acta. 2015 Nov;1847(11):1434-47. doi: 10.1016/j.bbabio.2015.05.005. Epub 2015 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验