Suppr超能文献

通过体内基因组编辑对哺乳动物大脑中的蛋白质定位进行高通量、高分辨率映射

High-Throughput, High-Resolution Mapping of Protein Localization in Mammalian Brain by In Vivo Genome Editing.

作者信息

Mikuni Takayasu, Nishiyama Jun, Sun Ye, Kamasawa Naomi, Yasuda Ryohei

机构信息

Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.

Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA.

出版信息

Cell. 2016 Jun 16;165(7):1803-1817. doi: 10.1016/j.cell.2016.04.044. Epub 2016 May 12.

Abstract

A scalable and high-throughput method to identify precise subcellular localization of endogenous proteins is essential for integrative understanding of a cell at the molecular level. Here, we developed a simple and generalizable technique to image endogenous proteins with high specificity, resolution, and contrast in single cells in mammalian brain tissue. The technique, single-cell labeling of endogenous proteins by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated homology-directed repair (SLENDR), uses in vivo genome editing to insert a sequence encoding an epitope tag or a fluorescent protein to a gene of interest by CRISPR-Cas9-mediated homology-directed repair (HDR). Single-cell, HDR-mediated genome editing was achieved by delivering the editing machinery to dividing neuronal progenitors through in utero electroporation. We demonstrate that SLENDR allows rapid determination of the localization and dynamics of many endogenous proteins in various cell types, regions, and ages in the brain. Thus, SLENDR provides a high-throughput platform to map the subcellular localization of endogenous proteins with the resolution of micro- to nanometers in the brain.

摘要

一种可扩展的高通量方法,用于识别内源性蛋白质的精确亚细胞定位,对于在分子水平上全面理解细胞至关重要。在此,我们开发了一种简单且可推广的技术,用于在哺乳动物脑组织的单细胞中以高特异性、分辨率和对比度对内源性蛋白质进行成像。该技术,即通过成簇规律间隔短回文重复序列(CRISPR)-Cas9介导的同源定向修复对内源性蛋白质进行单细胞标记(SLENDR),利用体内基因组编辑,通过CRISPR-Cas9介导的同源定向修复(HDR)将编码表位标签或荧光蛋白的序列插入到感兴趣的基因中。通过子宫内电穿孔将编辑机制传递给正在分裂的神经祖细胞,实现了单细胞、HDR介导的基因组编辑。我们证明,SLENDR能够快速确定大脑中各种细胞类型、区域和年龄的许多内源性蛋白质的定位和动态。因此,SLENDR提供了一个高通量平台,用于在大脑中以微米到纳米的分辨率绘制内源性蛋白质的亚细胞定位图。

相似文献

1
High-Throughput, High-Resolution Mapping of Protein Localization in Mammalian Brain by In Vivo Genome Editing.
Cell. 2016 Jun 16;165(7):1803-1817. doi: 10.1016/j.cell.2016.04.044. Epub 2016 May 12.
2
Genome editing-based approaches for imaging protein localization and dynamics in the mammalian brain.
Neurosci Res. 2020 Jan;150:2-7. doi: 10.1016/j.neures.2019.04.007. Epub 2019 Apr 26.
3
Virus-Mediated Genome Editing via Homology-Directed Repair in Mitotic and Postmitotic Cells in Mammalian Brain.
Neuron. 2017 Nov 15;96(4):755-768.e5. doi: 10.1016/j.neuron.2017.10.004. Epub 2017 Oct 19.
6
One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces.
Acta Biochim Biophys Sin (Shanghai). 2015 Apr;47(4):231-43. doi: 10.1093/abbs/gmv007. Epub 2015 Mar 3.
7
The application of genome editing in studying hearing loss.
Hear Res. 2015 Sep;327:102-8. doi: 10.1016/j.heares.2015.04.016. Epub 2015 May 15.
8
Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain.
Front Genome Ed. 2020 Nov 30;2:602970. doi: 10.3389/fgeed.2020.602970. eCollection 2020.
9
Harnessing CRISPR-Cas systems for bacterial genome editing.
Trends Microbiol. 2015 Apr;23(4):225-32. doi: 10.1016/j.tim.2015.01.008. Epub 2015 Feb 17.
10
Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
Arch Toxicol. 2015 Jul;89(7):1023-34. doi: 10.1007/s00204-015-1504-y. Epub 2015 Apr 1.

引用本文的文献

1
SeeThrough: a rationally designed skull clearing technique for in vivo brain imaging.
Nat Commun. 2025 Aug 26;16(1):7584. doi: 10.1038/s41467-025-62836-1.
2
Methods and applications of in vivo CRISPR screening.
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.
4
Rab10 inactivation promotes AMPAR trafficking and spine enlargement during long-term potentiation.
bioRxiv. 2025 May 28:2022.05.17.492345. doi: 10.1101/2022.05.17.492345.
5
Advances in CRISPR-Cas9 in lineage tracing of model animals.
Animal Model Exp Med. 2025 Jun;8(6):1004-1022. doi: 10.1002/ame2.70033. Epub 2025 Jun 10.
6
Isoflurane activates the type 1 ryanodine receptor to induce anesthesia in mice.
PLoS Biol. 2025 Jun 3;23(6):e3003172. doi: 10.1371/journal.pbio.3003172. eCollection 2025 Jun.
8
Multimodal cell maps as a foundation for structural and functional genomics.
Nature. 2025 Apr 9. doi: 10.1038/s41586-025-08878-3.
9
Genetically encoded biosensor for fluorescence lifetime imaging of PTEN dynamics in the intact brain.
Nat Methods. 2025 Apr;22(4):764-777. doi: 10.1038/s41592-025-02610-9. Epub 2025 Feb 20.
10
Single-cell synaptome mapping: its technical basis and applications in critical period plasticity research.
Front Neural Circuits. 2024 Dec 11;18:1523614. doi: 10.3389/fncir.2024.1523614. eCollection 2024.

本文引用的文献

1
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
2
Applications of CRISPR-Cas systems in neuroscience.
Nat Rev Neurosci. 2016 Jan;17(1):36-44. doi: 10.1038/nrn.2015.2. Epub 2015 Dec 10.
3
Rationally engineered Cas9 nucleases with improved specificity.
Science. 2016 Jan 1;351(6268):84-8. doi: 10.1126/science.aad5227. Epub 2015 Dec 1.
4
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.
Cell. 2015 Oct 22;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub 2015 Sep 25.
6
Altered Neuronal and Circuit Excitability in Fragile X Syndrome.
Neuron. 2015 Aug 19;87(4):699-715. doi: 10.1016/j.neuron.2015.06.017.
7
Saturated Reconstruction of a Volume of Neocortex.
Cell. 2015 Jul 30;162(3):648-61. doi: 10.1016/j.cell.2015.06.054.
8
Biochemical Computation for Spine Structural Plasticity.
Neuron. 2015 Jul 1;87(1):63-75. doi: 10.1016/j.neuron.2015.05.043.
9
High-performance probes for light and electron microscopy.
Nat Methods. 2015 Jun;12(6):568-76. doi: 10.1038/nmeth.3365. Epub 2015 Apr 27.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验