Suppr超能文献

嵌合H5血凝素可引发针对流感病毒的广泛体液免疫和细胞免疫反应。

Mosaic H5 Hemagglutinin Provides Broad Humoral and Cellular Immune Responses against Influenza Viruses.

作者信息

Kamlangdee Attapon, Kingstad-Bakke Brock, Osorio Jorge E

机构信息

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA

出版信息

J Virol. 2016 Jul 11;90(15):6771-6783. doi: 10.1128/JVI.00730-16. Print 2016 Aug 1.

Abstract

UNLABELLED

The most effective way to prevent influenza virus infection is via vaccination. However, the constant mutation of influenza viruses due to antigenic drift and shift compromises vaccine efficacy. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. Using the modified vaccinia Ankara (MVA) virus, we had previously generated a recombinant vaccine against highly pathogenic avian influenza virus (H5N1) based on an in silico mosaic approach. This MVA-H5M construct protected mice against multiple clades of H5N1 and H1N1 viruses. We have now further characterized the immune responses using immunodepletion of T cells and passive serum transfer, and these studies indicate that antibodies are the main contributors in homosubtypic protection (H5N1 clades). Compared to a MVA construct expressing hemagglutinin (HA) from influenza virus A/VN/1203/04 (MVA-HA), the MVA-H5M vaccine markedly increased and broadened B cell and T cell responses against H5N1 virus. The MVA-H5M also provided effective protection with no morbidity against H5N1 challenge, whereas MVA-HA-vaccinated mice showed clinical signs and experienced significant weight loss. In addition, MVA-H5M induced CD8(+) T cell responses that play a major role in heterosubtypic protection (H1N1). Finally, expression of the H5M gene as either a DNA vaccine or a subunit protein protected mice against H5N1 challenge, indicating the effectiveness of the mosaic sequence without viral vectors for the development of a universal influenza vaccine.

IMPORTANCE

Influenza viruses infect up to one billion people around the globe each year and are responsible for 300,000 to 500,000 deaths annually. Vaccines are still the main intervention to prevent infection, but they fail to provide effective protection against heterologous strains of viruses. We developed broadly reactive H5N1 vaccine based on an in silico mosaic approach and previously demonstrated that modified vaccinia Ankara expressing an H5 mosaic hemagglutinin prevented infection with multiple clades of H5N1 and limited severe disease after H1N1 infection. Further characterization revealed that antibody responses and T cells are main contributors to protection against H5N1 and H1N1 viruses, respectively. The vaccine also broadens both T cell and B cell responses compared to native H5 vaccine from influenza virus A/Vietnam/1203/04. Finally, delivering the H5 mosaic as a DNA vaccine or as a purified protein demonstrated effective protection similar to the viral vector approach.

摘要

未标记

预防流感病毒感染的最有效方法是接种疫苗。然而,由于抗原漂移和抗原转换导致流感病毒不断变异,影响了疫苗的效力。这对开发能够抵御流行病毒抗原多样性的交叉保护疫苗构成了重大挑战。我们之前利用改良安卡拉痘苗病毒(MVA),基于计算机模拟嵌合方法研发了一种针对高致病性禽流感病毒(H5N1)的重组疫苗。这种MVA-H5M构建体可保护小鼠抵御多种H5N1和H1N1病毒分支。我们现在进一步利用T细胞免疫耗竭和被动血清转移对免疫反应进行了表征,这些研究表明抗体是同亚型保护(H5N1分支)的主要贡献因素。与表达来自甲型流感病毒A/VN/1203/04血凝素(HA)的MVA构建体(MVA-HA)相比,MVA-H5M疫苗显著增强并拓宽了针对H5N1病毒的B细胞和T细胞反应。MVA-H5M还提供了有效的保护,使小鼠在受到H5N1攻击时不发病,而接种MVA-HA的小鼠出现了临床症状并体重显著减轻。此外,MVA-H5M诱导的CD8(+) T细胞反应在异亚型保护(H1N1)中起主要作用。最后,将H5M基因作为DNA疫苗或亚单位蛋白表达可保护小鼠抵御H5N1攻击,这表明嵌合序列在不使用病毒载体的情况下对开发通用流感疫苗具有有效性。

重要性

流感病毒每年感染全球多达10亿人,每年导致30万至50万人死亡。疫苗仍然是预防感染的主要干预措施,但它们无法对异源病毒株提供有效的保护。我们基于计算机模拟嵌合方法开发了具有广泛反应性的H5N1疫苗,之前已证明表达H5嵌合血凝素的改良安卡拉痘苗可预防多种H5N1病毒分支的感染,并在感染H1N1后减轻严重疾病。进一步的表征显示,抗体反应和T细胞分别是抵御H5N1和H1N1病毒的主要保护因素。与来自甲型流感病毒A/越南/1203/04的天然H5疫苗相比,该疫苗还拓宽了T细胞和B细胞反应。最后,将H5嵌合体作为DNA疫苗或纯化蛋白递送显示出与病毒载体方法相似的有效保护作用。

相似文献

1
Mosaic H5 Hemagglutinin Provides Broad Humoral and Cellular Immune Responses against Influenza Viruses.
J Virol. 2016 Jul 11;90(15):6771-6783. doi: 10.1128/JVI.00730-16. Print 2016 Aug 1.
3
Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.
J Virol. 2014 Nov;88(22):13418-28. doi: 10.1128/JVI.01219-14. Epub 2014 Sep 10.
4
A modified vaccinia Ankara vaccine vector expressing a mosaic H5 hemagglutinin reduces viral shedding in rhesus macaques.
PLoS One. 2017 Aug 3;12(8):e0181738. doi: 10.1371/journal.pone.0181738. eCollection 2017.
5
Immunogenicity of modified vaccinia virus Ankara expressing the hemagglutinin stalk domain of pandemic (H1N1) 2009 influenza virus.
Pathog Glob Health. 2017 Mar;111(2):69-75. doi: 10.1080/20477724.2016.1275464. Epub 2017 Jan 12.
6
Effective mosaic-based nanovaccines against avian influenza in poultry.
Vaccine. 2019 Aug 14;37(35):5051-5058. doi: 10.1016/j.vaccine.2019.06.077. Epub 2019 Jul 9.

引用本文的文献

1
Synthetic Neuraminidase Vaccine Induces Cross-Species and Multi-Subtype Protection.
Vaccines (Basel). 2025 Mar 28;13(4):364. doi: 10.3390/vaccines13040364.
2
Diversifying T-cell responses: safeguarding against pandemic influenza with mosaic nucleoprotein.
J Virol. 2025 Mar 18;99(3):e0086724. doi: 10.1128/jvi.00867-24. Epub 2025 Feb 3.
4
Safety and immunogenicity of orally administered poxvirus vectored constructs in the white-footed mouse ().
Vaccine X. 2022 Dec 28;13:100259. doi: 10.1016/j.jvacx.2022.100259. eCollection 2023 Apr.
5
Strategies targeting hemagglutinin cocktail as a potential universal influenza vaccine.
Front Microbiol. 2022 Sep 29;13:1014122. doi: 10.3389/fmicb.2022.1014122. eCollection 2022.
6
Targeting Antigens for Universal Influenza Vaccine Development.
Viruses. 2021 May 24;13(6):973. doi: 10.3390/v13060973.
7
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine.
Vaccines (Basel). 2021 Mar 13;9(3):257. doi: 10.3390/vaccines9030257.
9
Localized and Systemic Immune Responses against SARS-CoV-2 Following Mucosal Immunization.
Vaccines (Basel). 2021 Feb 6;9(2):132. doi: 10.3390/vaccines9020132.
10
Progress in the Development of Universal Influenza Vaccines.
Viruses. 2020 Sep 17;12(9):1033. doi: 10.3390/v12091033.

本文引用的文献

1
Increased Valency of Conserved-mosaic Vaccines Enhances the Breadth and Depth of Epitope Recognition.
Mol Ther. 2016 Feb;24(2):375-384. doi: 10.1038/mt.2015.210. Epub 2015 Nov 19.
2
The Quest for a Universal Flu Vaccine: Headless HA 2.0.
Cell Host Microbe. 2015 Oct 14;18(4):395-7. doi: 10.1016/j.chom.2015.10.003.
4
Emerging influenza viruses and the prospect of a universal influenza virus vaccine.
Biotechnol J. 2015 May;10(5):690-701. doi: 10.1002/biot.201400393. Epub 2015 Mar 2.
6
Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques.
J Virol. 2014 Nov;88(22):13418-28. doi: 10.1128/JVI.01219-14. Epub 2014 Sep 10.
9
Role of T cell immunity in recovery from influenza virus infection.
Curr Opin Virol. 2013 Aug;3(4):425-9. doi: 10.1016/j.coviro.2013.05.001. Epub 2013 May 27.
10
Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies.
J Virol. 2013 Jun;87(12):6542-50. doi: 10.1128/JVI.00641-13. Epub 2013 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验