Suppr超能文献

疏水性阿奇霉素的表面涂层需要达到多少才能充分防止吸湿无定形黏菌素粉末的气溶胶化作用降低?

How Much Surface Coating of Hydrophobic Azithromycin Is Sufficient to Prevent Moisture-Induced Decrease in Aerosolisation of Hygroscopic Amorphous Colistin Powder?

机构信息

Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907-2091, USA.

Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia.

出版信息

AAPS J. 2016 Sep;18(5):1213-1224. doi: 10.1208/s12248-016-9934-x. Epub 2016 Jun 2.

Abstract

Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprises two drugs in the designed mass ratio, which is supported by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. XPS and ToF-SIMS measurements also revealed that 50% by weight (or 35% by molecular fraction) of azithromycin in the formulation provided a near complete coating of 96.5% (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in fine particle fraction (FPF)recovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20% w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture.

摘要

由于毛细作用力的增加,黏菌素吸湿颗粒在高湿度环境下的空气动力学性能可能会受到影响。将黏菌素与疏水性药物共同喷雾干燥已知可以在复合颗粒表面提供一层保护性涂层,防止因水分导致空气动力学性能降低;然而,在高相对湿度下,成分比例对表面涂层质量和粉末空气动力学性能的影响尚不清楚。在这项研究中,我们系统地研究了疏水性阿奇霉素的质量比对共喷雾干燥复合颗粒表面涂层质量和空气动力学性能的影响。通过共喷雾干燥药物溶液制备了四个具有不同药物比例的组合配方。每个组合配方中的两种药物都具有相似的体外沉积曲线,表明每个复合颗粒都包含两种按设计质量比的药物,这得到了 X 射线光电子能谱 (XPS) 和飞行时间二次离子质谱 (ToF-SIMS) 数据的支持。XPS 和 ToF-SIMS 测量还表明,配方中 50%(或 35%的分子分数)的阿奇霉素提供了对复合颗粒表面 96.5%(摩尔分数)的近乎完全覆盖,足以防止因湿度引起的细颗粒分数(FPF)回收率和 FPF 发射量降低。更高的阿奇霉素含量不会增加涂层覆盖率,而低于 20%w/w 的阿奇霉素含量并不能完全防止湿度对空气动力学性能的负面影响。这项研究强调了需要有一个临界量的阿奇霉素来充分覆盖黏菌素颗粒,以提供短期的防潮保护。

相似文献

4
L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.
Eur J Pharm Biopharm. 2016 May;102:132-41. doi: 10.1016/j.ejpb.2016.02.010. Epub 2016 Mar 9.
5
Improved Physical Stability and Aerosolization of Inhalable Amorphous Ciprofloxacin Powder Formulations by Incorporating Synergistic Colistin.
Mol Pharm. 2018 Sep 4;15(9):4004-4020. doi: 10.1021/acs.molpharmaceut.8b00445. Epub 2018 Aug 3.
10

引用本文的文献

1
Particle surface coating for dry powder inhaler formulations.
Expert Opin Drug Deliv. 2025 May;22(5):711-727. doi: 10.1080/17425247.2025.2482052. Epub 2025 Mar 26.
4
Pharmacokinetics and Histotoxic Profile of a Novel Azithromycin-Loaded Lipid-Based Nanoformulation.
AAPS PharmSciTech. 2024 Jul 9;25(6):157. doi: 10.1208/s12249-024-02861-3.
5
Spray-Dried Inhalable Powder Formulations of Gentamicin Designed for Pneumonic Plague Therapy in a Mouse Model.
Pharmaceutics. 2022 Nov 29;14(12):2646. doi: 10.3390/pharmaceutics14122646.
6
Advancements in Particle Engineering for Inhalation Delivery of Small Molecules and Biotherapeutics.
Pharm Res. 2022 Dec;39(12):3047-3061. doi: 10.1007/s11095-022-03363-2. Epub 2022 Sep 7.
7
Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies.
Acta Pharm Sin B. 2021 Aug;11(8):2505-2536. doi: 10.1016/j.apsb.2021.05.014. Epub 2021 Jun 5.
9
Pulmonary Drug Delivery of Antimicrobials and Anticancer Drugs Using Solid Dispersions.
Pharmaceutics. 2021 Jul 10;13(7):1056. doi: 10.3390/pharmaceutics13071056.
10
Novel Approaches for the Treatment of Pulmonary Tuberculosis.
Pharmaceutics. 2020 Dec 10;12(12):1196. doi: 10.3390/pharmaceutics12121196.

本文引用的文献

1
Development of Liposomal Ciprofloxacin to Treat Lung Infections.
Pharmaceutics. 2016 Mar 1;8(1):6. doi: 10.3390/pharmaceutics8010006.
2
Colistin resistance: a major breach in our last line of defence.
Lancet Infect Dis. 2016 Feb;16(2):132-3. doi: 10.1016/S1473-3099(15)00463-6. Epub 2015 Nov 19.
3
Powder Production and Particle Engineering for Dry Powder Inhaler Formulations.
Curr Pharm Des. 2015;21(27):3902-16. doi: 10.2174/1381612821666150820111134.
7
Inhaled antimicrobial chemotherapy for respiratory tract infections: successes, challenges and the road ahead.
Adv Drug Deliv Rev. 2015 May;85:v-vii. doi: 10.1016/j.addr.2015.04.010. Epub 2015 Apr 20.
8
Inhaled formulations and pulmonary drug delivery systems for respiratory infections.
Adv Drug Deliv Rev. 2015 May;85:83-99. doi: 10.1016/j.addr.2014.10.022. Epub 2014 Oct 24.
9
Inhaled antimicrobial therapy - barriers to effective treatment.
Adv Drug Deliv Rev. 2015 May;85:24-43. doi: 10.1016/j.addr.2014.08.013. Epub 2014 Sep 1.
10
Emerging inhalation aerosol devices and strategies: where are we headed?
Adv Drug Deliv Rev. 2014 Aug;75:3-17. doi: 10.1016/j.addr.2014.03.006. Epub 2014 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验