Suppr超能文献

原噬菌体通过多种机制介导对噬菌体感染的防御。

Prophages mediate defense against phage infection through diverse mechanisms.

作者信息

Bondy-Denomy Joseph, Qian Jason, Westra Edze R, Buckling Angus, Guttman David S, Davidson Alan R, Maxwell Karen L

机构信息

Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.

Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.

出版信息

ISME J. 2016 Dec;10(12):2854-2866. doi: 10.1038/ismej.2016.79. Epub 2016 Jun 3.

Abstract

The activity of bacteriophages poses a major threat to bacterial survival. Upon infection, a temperate phage can either kill the host cell or be maintained as a prophage. In this state, the bacteria carrying the prophage is at risk of superinfection, where another phage injects its genetic material and competes for host cell resources. To avoid this, many phages have evolved mechanisms that alter the bacteria and make it resistant to phage superinfection. The mechanisms underlying these phentoypic conversions and the fitness consequences for the host are poorly understood, and systematic studies of superinfection exclusion mechanisms are lacking. In this study, we examined a wide range of Pseudomonas aeruginosa phages and found that they mediate superinfection exclusion through a variety of mechanisms, some of which affected the type IV pilus and O-antigen, and others that functioned inside the cell. The strongest resistance mechanism was a surface modification that we showed is cost-free for the bacterial host in a natural soil environment and in a Caenorhabditis. elegans infection model. This study represents the first systematic approach to address how a population of prophages influences phage resistance and bacterial behavior in P. aeruginosa.

摘要

噬菌体的活性对细菌的生存构成重大威胁。感染后,温和噬菌体既可以杀死宿主细胞,也可以作为原噬菌体维持存在。在这种状态下,携带原噬菌体的细菌面临着超感染的风险,即另一种噬菌体注入其遗传物质并竞争宿主细胞资源。为避免这种情况,许多噬菌体已经进化出改变细菌并使其对噬菌体超感染具有抗性的机制。这些表型转换的潜在机制以及对宿主的适应性后果了解甚少,并且缺乏对超感染排除机制的系统研究。在这项研究中,我们研究了多种铜绿假单胞菌噬菌体,发现它们通过多种机制介导超感染排除,其中一些机制影响IV型菌毛和O抗原,另一些则在细胞内起作用。最强的抗性机制是一种表面修饰,我们发现在天然土壤环境和秀丽隐杆线虫感染模型中,这种修饰对细菌宿主没有成本。这项研究代表了第一种系统方法,用于解决原噬菌体群体如何影响铜绿假单胞菌中的噬菌体抗性和细菌行为。

相似文献

1
Prophages mediate defense against phage infection through diverse mechanisms.
ISME J. 2016 Dec;10(12):2854-2866. doi: 10.1038/ismej.2016.79. Epub 2016 Jun 3.
2
Filamentous prophage capsid proteins contribute to superinfection exclusion and phage defence in Pseudomonas aeruginosa.
Environ Microbiol. 2022 Sep;24(9):4285-4298. doi: 10.1111/1462-2920.15991. Epub 2022 Apr 11.
3
Phage against the Machine: The SIE-ence of Superinfection Exclusion.
Viruses. 2024 Aug 23;16(9):1348. doi: 10.3390/v16091348.
4
A Filamentous Bacteriophage Protein Inhibits Type IV Pili To Prevent Superinfection of Pseudomonas aeruginosa.
mBio. 2022 Feb 22;13(1):e0244121. doi: 10.1128/mbio.02441-21. Epub 2022 Jan 18.
5
Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes.
J Bacteriol. 2018 Oct 23;200(22). doi: 10.1128/JB.00189-18. Print 2018 Nov 15.
7
Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation.
Nat Microbiol. 2018 Jan;3(1):47-52. doi: 10.1038/s41564-017-0061-y. Epub 2017 Nov 13.
8
Bacteriophage P22 SieA-mediated superinfection exclusion.
mBio. 2024 Feb 14;15(2):e0216923. doi: 10.1128/mbio.02169-23. Epub 2024 Jan 18.
9
Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements.
Annu Rev Virol. 2024 Sep;11(1):343-362. doi: 10.1146/annurev-virology-100422-125123. Epub 2024 Aug 30.
10
A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa.
Mol Cell. 2021 Feb 4;81(3):571-583.e6. doi: 10.1016/j.molcel.2020.12.011. Epub 2021 Jan 6.

引用本文的文献

1
Programmable antisense oligomers for phage functional genomics.
Nature. 2025 Sep 10. doi: 10.1038/s41586-025-09499-6.
4
Temperate phages increase antibiotic effectiveness in a infection model.
mBio. 2025 Aug 18:e0162125. doi: 10.1128/mbio.01621-25.
5
Synergistic effects of commensals and phage predation in suppressing colonization by pathogenic Vibrio parahaemolyticus.
NPJ Biofilms Microbiomes. 2025 Aug 16;11(1):163. doi: 10.1038/s41522-025-00802-x.
6
Temperate phages enhance host fitness via RNA-guided flagellar remodeling.
bioRxiv. 2025 Jul 22:2025.07.22.666180. doi: 10.1101/2025.07.22.666180.
7
Prophages block cell surface receptors to preserve their viral progeny.
Nature. 2025 Jul 16. doi: 10.1038/s41586-025-09260-z.
8
A prophage-encoded sRNA limits lytic phage infection of adherent-invasive .
bioRxiv. 2025 May 6:2025.05.06.652453. doi: 10.1101/2025.05.06.652453.
9
An archaeal chronic virus escapes the immunity of prokaryotic Argonaute.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf576.
10
The Current Landscape of Phage-Antibiotic Synergistic (PAS) Interactions.
Antibiotics (Basel). 2025 May 27;14(6):545. doi: 10.3390/antibiotics14060545.

本文引用的文献

1
Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense.
Curr Biol. 2015 Apr 20;25(8):1043-9. doi: 10.1016/j.cub.2015.01.065. Epub 2015 Mar 12.
2
Core and accessory genome architecture in a group of Pseudomonas aeruginosa Mu-like phages.
BMC Genomics. 2014 Dec 19;15(1):1146. doi: 10.1186/1471-2164-15-1146.
3
A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11503-8. doi: 10.1073/pnas.1403537111. Epub 2014 Jul 21.
5
When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness.
J Microbiol. 2014 Mar;52(3):235-42. doi: 10.1007/s12275-014-4083-3. Epub 2014 Mar 1.
7
Revenge of the phages: defeating bacterial defences.
Nat Rev Microbiol. 2013 Oct;11(10):675-87. doi: 10.1038/nrmicro3096. Epub 2013 Aug 27.
8
Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system.
Nature. 2013 Jan 17;493(7432):429-32. doi: 10.1038/nature11723. Epub 2012 Dec 16.
10
Bacteria-virus coevolution.
Adv Exp Med Biol. 2012;751:347-70. doi: 10.1007/978-1-4614-3567-9_16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验