Bondy-Denomy Joseph, Qian Jason, Westra Edze R, Buckling Angus, Guttman David S, Davidson Alan R, Maxwell Karen L
Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
ISME J. 2016 Dec;10(12):2854-2866. doi: 10.1038/ismej.2016.79. Epub 2016 Jun 3.
The activity of bacteriophages poses a major threat to bacterial survival. Upon infection, a temperate phage can either kill the host cell or be maintained as a prophage. In this state, the bacteria carrying the prophage is at risk of superinfection, where another phage injects its genetic material and competes for host cell resources. To avoid this, many phages have evolved mechanisms that alter the bacteria and make it resistant to phage superinfection. The mechanisms underlying these phentoypic conversions and the fitness consequences for the host are poorly understood, and systematic studies of superinfection exclusion mechanisms are lacking. In this study, we examined a wide range of Pseudomonas aeruginosa phages and found that they mediate superinfection exclusion through a variety of mechanisms, some of which affected the type IV pilus and O-antigen, and others that functioned inside the cell. The strongest resistance mechanism was a surface modification that we showed is cost-free for the bacterial host in a natural soil environment and in a Caenorhabditis. elegans infection model. This study represents the first systematic approach to address how a population of prophages influences phage resistance and bacterial behavior in P. aeruginosa.
噬菌体的活性对细菌的生存构成重大威胁。感染后,温和噬菌体既可以杀死宿主细胞,也可以作为原噬菌体维持存在。在这种状态下,携带原噬菌体的细菌面临着超感染的风险,即另一种噬菌体注入其遗传物质并竞争宿主细胞资源。为避免这种情况,许多噬菌体已经进化出改变细菌并使其对噬菌体超感染具有抗性的机制。这些表型转换的潜在机制以及对宿主的适应性后果了解甚少,并且缺乏对超感染排除机制的系统研究。在这项研究中,我们研究了多种铜绿假单胞菌噬菌体,发现它们通过多种机制介导超感染排除,其中一些机制影响IV型菌毛和O抗原,另一些则在细胞内起作用。最强的抗性机制是一种表面修饰,我们发现在天然土壤环境和秀丽隐杆线虫感染模型中,这种修饰对细菌宿主没有成本。这项研究代表了第一种系统方法,用于解决原噬菌体群体如何影响铜绿假单胞菌中的噬菌体抗性和细菌行为。