Suppr超能文献

基于同源性鉴定冠状病毒RNA依赖性RNA聚合酶中赋予对多种诱变剂抗性的突变

Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens.

作者信息

Sexton Nicole R, Smith Everett Clinton, Blanc Hervé, Vignuzzi Marco, Peersen Olve B, Denison Mark R

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

J Virol. 2016 Jul 27;90(16):7415-7428. doi: 10.1128/JVI.00080-16. Print 2016 Aug 15.

Abstract

UNLABELLED

Positive-sense RNA viruses encode RNA-dependent RNA polymerases (RdRps) essential for genomic replication. With the exception of the large nidoviruses, such as coronaviruses (CoVs), RNA viruses lack proofreading and thus are dependent on RdRps to control nucleotide selectivity and fidelity. CoVs encode a proofreading exonuclease in nonstructural protein 14 (nsp14-ExoN), which confers a greater-than-10-fold increase in fidelity compared to other RNA viruses. It is unknown to what extent the CoV polymerase (nsp12-RdRp) participates in replication fidelity. We sought to determine whether homology modeling could identify putative determinants of nucleotide selectivity and fidelity in CoV RdRps. We modeled the CoV murine hepatitis virus (MHV) nsp12-RdRp structure and superimposed it on solved picornaviral RdRp structures. Fidelity-altering mutations previously identified in coxsackie virus B3 (CVB3) were mapped onto the nsp12-RdRp model structure and then engineered into the MHV genome with [nsp14-ExoN(+)] or without [nsp14-ExoN(-)] ExoN activity. Using this method, we identified two mutations conferring resistance to the mutagen 5-fluorouracil (5-FU): nsp12-M611F and nsp12-V553I. For nsp12-V553I, we also demonstrate resistance to the mutagen 5-azacytidine (5-AZC) and decreased accumulation of mutations. Resistance to 5-FU, and a decreased number of genomic mutations, was effectively masked by nsp14-ExoN proofreading activity. These results indicate that nsp12-RdRp likely functions in fidelity regulation and that, despite low sequence conservation, some determinants of RdRp nucleotide selectivity are conserved across RNA viruses. The results also indicate that, with regard to nucleotide selectivity, nsp14-ExoN is epistatic to nsp12-RdRp, consistent with its proposed role in a multiprotein replicase-proofreading complex.

IMPORTANCE

RNA viruses have evolutionarily fine-tuned replication fidelity to balance requirements for genetic stability and diversity. Responsibility for replication fidelity in RNA viruses has been attributed to the RNA-dependent RNA polymerases, with mutations in RdRps for multiple RNA viruses shown to alter fidelity and attenuate virus replication and virulence. Coronaviruses (CoVs) are the only known RNA viruses to encode a proofreading exonuclease (nsp14-ExoN), as well as other replicase proteins involved in regulation of fidelity. This report shows that the CoV RdRp (nsp12) likely functions in replication fidelity; that residue determinants of CoV RdRp nucleotide selectivity map to similar structural regions of other, unrelated RNA viral polymerases; and that for CoVs, the proofreading activity of the nsp14-ExoN is epistatic to the function of the RdRp in fidelity.

摘要

未标记

正义RNA病毒编码对基因组复制至关重要的RNA依赖性RNA聚合酶(RdRps)。除了大型巢病毒,如冠状病毒(CoV)外,RNA病毒缺乏校对功能,因此依赖RdRps来控制核苷酸选择性和保真度。CoV在非结构蛋白14(nsp14-ExoN)中编码一种校对核酸外切酶,与其他RNA病毒相比,其保真度提高了10倍以上。目前尚不清楚CoV聚合酶(nsp12-RdRp)在复制保真度中发挥作用的程度。我们试图确定同源建模是否可以识别CoV RdRps中核苷酸选择性和保真度的推定决定因素。我们对CoV小鼠肝炎病毒(MHV)nsp12-RdRp结构进行建模,并将其叠加在已解析的小RNA病毒RdRp结构上。先前在柯萨奇病毒B3(CVB3)中鉴定出的改变保真度的突变被映射到nsp12-RdRp模型结构上,然后在具有[nsp14-ExoN(+)]或不具有[nsp14-ExoN(-)] ExoN活性的情况下,将其构建到MHV基因组中。使用这种方法,我们鉴定出两个赋予对诱变剂5-氟尿嘧啶(5-FU)抗性的突变:nsp12-M611F和nsp12-V553I。对于nsp12-V553I,我们还证明了对诱变剂5-氮杂胞苷(5-AZC)的抗性以及突变积累的减少。nsp14-ExoN校对活性有效地掩盖了对5-FU的抗性以及基因组突变数量的减少。这些结果表明,nsp12-RdRp可能在保真度调节中起作用,并且尽管序列保守性较低,但RdRp核苷酸选择性的一些决定因素在RNA病毒中是保守的。结果还表明,就核苷酸选择性而言,nsp14-ExoN对nsp12-RdRp是上位性的,这与其在多蛋白复制酶校对复合物中的假定作用一致。

重要性

RNA病毒在进化过程中对复制保真度进行了微调,以平衡对遗传稳定性和多样性的要求。RNA病毒复制保真度的责任归因于RNA依赖性RNA聚合酶,多种RNA病毒的RdRps中的突变已显示会改变保真度并减弱病毒复制和毒力。冠状病毒(CoV)是唯一已知编码校对核酸外切酶(nsp14-ExoN)以及其他参与保真度调节的复制酶蛋白的RNA病毒。本报告表明,CoV RdRp(nsp12)可能在复制保真度中起作用;CoV RdRp核苷酸选择性的残基决定因素映射到其他不相关RNA病毒聚合酶的相似结构区域;对于CoV,nsp14-ExoN的校对活性对RdRp在保真度方面的功能是上位性的。

相似文献

2
Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity.
J Virol. 2015 Jun;89(12):6418-26. doi: 10.1128/JVI.00110-15. Epub 2015 Apr 8.
5
Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity.
J Virol. 2017 Dec 14;92(1). doi: 10.1128/JVI.01531-17. Print 2018 Jan 1.
7
Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites.
Antiviral Res. 2020 Jun;178:104793. doi: 10.1016/j.antiviral.2020.104793. Epub 2020 Apr 10.
10
Fidelity of Ribonucleotide Incorporation by the SARS-CoV-2 Replication Complex.
J Mol Biol. 2023 Mar 1;435(5):167973. doi: 10.1016/j.jmb.2023.167973. Epub 2023 Jan 20.

引用本文的文献

1
Advancing CRISPR-Based Solutions for COVID-19 Diagnosis and Therapeutics.
Cells. 2024 Oct 30;13(21):1794. doi: 10.3390/cells13211794.
3
A Comprehensive View on the Protein Functions of Porcine Epidemic Diarrhea Virus.
Genes (Basel). 2024 Jan 26;15(2):165. doi: 10.3390/genes15020165.
4
CRISPR use in diagnosis and therapy for COVID-19.
Methods Microbiol. 2022;50:123-150. doi: 10.1016/bs.mim.2022.03.002. Epub 2022 May 6.
5
Re-Emerging COVID-19: Controversy of Its Zoonotic Origin, Risks of Severity of Reinfection and Management.
Int J Gen Med. 2023 Sep 20;16:4307-4319. doi: 10.2147/IJGM.S419789. eCollection 2023.
6
SARS-CoV-2 entry into and evolution within a skilled nursing facility.
Sci Rep. 2023 Jul 19;13(1):11657. doi: 10.1038/s41598-023-38544-5.
9
Kill or corrupt: Mechanisms of action and drug-resistance of nucleotide analogues against SARS-CoV-2.
Antiviral Res. 2023 Feb;210:105501. doi: 10.1016/j.antiviral.2022.105501. Epub 2022 Dec 22.

本文引用的文献

1
Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses.
Annu Rev Virol. 2014 Nov;1(1):111-32. doi: 10.1146/annurev-virology-031413-085507. Epub 2014 Jun 2.
4
Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes.
PLoS Pathog. 2015 Jun 26;11(6):e1005009. doi: 10.1371/journal.ppat.1005009. eCollection 2015 Jun.
5
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
6
Group Selection and Contribution of Minority Variants during Virus Adaptation Determines Virus Fitness and Phenotype.
PLoS Pathog. 2015 May 5;11(5):e1004838. doi: 10.1371/journal.ppat.1004838. eCollection 2015 May.
7
Mutations in coronavirus nonstructural protein 10 decrease virus replication fidelity.
J Virol. 2015 Jun;89(12):6418-26. doi: 10.1128/JVI.00110-15. Epub 2015 Apr 8.
8
Deep sequencing analysis of viral infection and evolution allows rapid and detailed characterization of viral mutant spectrum.
Bioinformatics. 2015 Jul 1;31(13):2141-50. doi: 10.1093/bioinformatics/btv101. Epub 2015 Feb 19.
9
Effective lethal mutagenesis of influenza virus by three nucleoside analogs.
J Virol. 2015 Apr;89(7):3584-97. doi: 10.1128/JVI.03483-14. Epub 2015 Jan 14.
10
Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases.
J Virol. 2015 Jan;89(1):275-86. doi: 10.1128/JVI.01574-14. Epub 2014 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验