Suppr超能文献

基于谷氨酸脲的前列腺特异性膜抗原(PSMA)靶向放射性治疗药物的内化设计

Design of Internalizing PSMA-specific Glu-ureido-based Radiotherapeuticals.

作者信息

Wüstemann Till, Bauder-Wüst Ulrike, Schäfer Martin, Eder Matthias, Benesova Martina, Leotta Karin, Kratochwil Clemens, Haberkorn Uwe, Kopka Klaus, Mier Walter

机构信息

1. AffiliationDepartment for Nuclear Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.

2. Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Theranostics. 2016 Apr 28;6(8):1085-95. doi: 10.7150/thno.13448. eCollection 2016.

Abstract

Despite the progress in diagnosis and treatment, prostate cancer (PCa) is one of the main causes for cancer-associated deaths among men. Recently, prostate-specific membrane antigen (PSMA) binding tracers have revolutionized the molecular imaging of this disease. The translation of these tracers into therapeutic applications is challenging because of high PSMA-associated kidney uptake. While both the tumor uptake and the uptake in the kidneys are PSMA-specific, the kidneys show a more rapid clearance than tumor lesions. Consequently, the potential of endoradiotherapeutic drugs targeting PSMA is highly dependent on a sustained retention in the tumor - ideally achieved by predominant internalization of the respective tracer. Previously, we were able to show that the pharmacokinetics of the tracers containing the Glu-urea-based binding motif can be further enhanced with a specifically designed linker. Here, we evaluate an eventual influence of the chelator moiety on the pharmacokinetics, including the tumor internalization. A series of tracers modified by different chelators were synthesized using solid phase chemistry. The conjugates were radiolabeled to evaluate the influence on the receptor binding affinity, the ligand-induced internalization and the biodistribution behavior. Competitive binding and internalization assays were performed on PSMA positive LNCaP cells and the biodistribution of the most promising compound was evaluated by positron emission tomography (PET) in LNCaP-tumor-bearing mice. Interestingly, conjugation of the different chelators did not cause significant differences: all compounds showed nanomolar binding affinities with only minor differences. PET imaging of the (68)Ga-labeled CHX-A''-DTPA conjugate revealed that the chelator moiety does not impair the specificity of tumor uptake when compared to the gold standard PSMA-617. However, strong differences of the internalization ratios caused by the chelator moiety were observed: differences in internalization between 15% and 65% were observed, with the CHX-A''-DTPA conjugate displaying the highest internalization ratio. A first-in-man PET/CT study proved the high tumor uptake of this (68)Ga-labeled PSMA-targeting compound. These data indicate that hydrophobic entities at the chelator mediate the internalization efficacy. Based on its specific tumor uptake in combination with its very high internalization ratio, the clinical performance of the chelator-conjugated Glu-urea-based PSMA inhibitors will be further elucidated.

摘要

尽管在前列腺癌(PCa)的诊断和治疗方面取得了进展,但它仍是男性癌症相关死亡的主要原因之一。最近,前列腺特异性膜抗原(PSMA)结合示踪剂彻底改变了这种疾病的分子成像。由于PSMA相关的肾脏摄取较高,将这些示踪剂转化为治疗应用具有挑战性。虽然肿瘤摄取和肾脏摄取都是PSMA特异性的,但肾脏的清除速度比肿瘤病变更快。因此,靶向PSMA的内照射治疗药物的潜力高度依赖于在肿瘤中的持续保留——理想情况下是通过各自示踪剂的主要内化来实现。此前,我们能够证明,含有基于Glu-尿素的结合基序的示踪剂的药代动力学可以通过专门设计的连接子进一步增强。在这里,我们评估螯合剂部分对药代动力学的最终影响,包括肿瘤内化。使用固相化学合成了一系列由不同螯合剂修饰的示踪剂。对这些缀合物进行放射性标记,以评估其对受体结合亲和力、配体诱导的内化和生物分布行为的影响。在PSMA阳性的LNCaP细胞上进行了竞争性结合和内化测定,并通过正电子发射断层扫描(PET)在荷LNCaP肿瘤的小鼠中评估了最有前景的化合物的生物分布。有趣的是,不同螯合剂的缀合并未引起显著差异:所有化合物均显示出纳摩尔级的结合亲和力,差异很小。(68)Ga标记的CHX-A''-DTPA缀合物的PET成像显示,与金标准PSMA-617相比,螯合剂部分不会损害肿瘤摄取的特异性。然而,观察到螯合剂部分导致的内化率存在很大差异:内化差异在15%至65%之间,CHX-A''-DTPA缀合物显示出最高的内化率。一项首次人体PET/CT研究证明了这种(68)Ga标记的靶向PSMA的化合物具有高肿瘤摄取。这些数据表明,螯合剂处的疏水实体介导了内化功效。基于其特定的肿瘤摄取及其非常高的内化率,螯合剂缀合的基于Glu-尿素的PSMA抑制剂的临床性能将得到进一步阐明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb91/4893637/89fe63b9ec42/thnov06p1085g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验