Suppr超能文献

胶原蛋白底物刚度各向异性影响细胞伸长、核形状以及干细胞向各向异性组织谱系的命运。

Collagen Substrate Stiffness Anisotropy Affects Cellular Elongation, Nuclear Shape, and Stem Cell Fate toward Anisotropic Tissue Lineage.

作者信息

Islam Anowarul, Younesi Mousa, Mbimba Thomas, Akkus Ozan

机构信息

Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

出版信息

Adv Healthc Mater. 2016 Sep;5(17):2237-47. doi: 10.1002/adhm.201600284. Epub 2016 Jul 5.

Abstract

Rigidity of substrates plays an important role in stem cell fate. Studies are commonly carried out on isotropically stiff substrate or substrates with unidirectional stiffness gradients. However, many native tissues are anisotropically stiff and it is unknown whether controlled presentation of stiff and compliant material axes on the same substrate governs cytoskeletal and nuclear morphology, as well as stem cell differentiation. In this study, electrocompacted collagen sheets are stretched to varying degrees to tune the stiffness anisotropy (SA) in the range of 1 to 8, resulting in stiff and compliant material axes orthogonal to each other. The cytoskeletal aspect ratio increased with increasing SA by about fourfold. Such elongation was absent on cellulose acetate replicas of aligned collagen surfaces indicating that the elongation was not driven by surface topography. Mesenchymal stem cells (MSCs) seeded on varying anisotropy sheets displayed a dose-dependent upregulation of tendon-related markers such as Mohawk and Scleraxis. After 21 d of culture, highly anisotropic sheets induced greater levels of production of type-I, type-III collagen, and thrombospondin-4. Therefore, SA has direct effects on MSC differentiation. These findings may also have ramifications of stem cell fate on other anisotropically stiff tissues, such as skeletal/cardiac muscles, ligaments, and bone.

摘要

底物的硬度在干细胞命运中起着重要作用。研究通常在各向同性硬度的底物或具有单向硬度梯度的底物上进行。然而,许多天然组织具有各向异性的硬度,并且尚不清楚在同一底物上控制性地呈现硬材料轴和软材料轴是否会影响细胞骨架和细胞核形态,以及干细胞分化。在本研究中,将电压实的胶原片拉伸至不同程度,以将硬度各向异性(SA)调节至1至8的范围,从而产生相互正交的硬材料轴和软材料轴。细胞骨架的长宽比随着SA的增加而增加约四倍。在排列的胶原表面的醋酸纤维素复制品上没有这种伸长现象,这表明伸长不是由表面形貌驱动的。接种在不同各向异性片材上的间充质干细胞(MSC)显示出肌腱相关标志物(如Mohawk和Scleraxis)的剂量依赖性上调。培养21天后,高度各向异性的片材诱导更高水平的I型、III型胶原蛋白和血小板反应蛋白-4的产生。因此,SA对MSC分化有直接影响。这些发现也可能对其他各向异性硬组织(如骨骼肌/心肌、韧带和骨骼)上的干细胞命运产生影响。

相似文献

3
Anisotropically Stiff 3D Micropillar Niche Induces Extraordinary Cell Alignment and Elongation.
Adv Healthc Mater. 2016 Aug;5(15):1884-92. doi: 10.1002/adhm.201600096. Epub 2016 May 18.
6
The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β.
Biomaterials. 2011 Jun;32(16):3921-30. doi: 10.1016/j.biomaterials.2011.02.019.
7
Hypoxia impacts human MSC response to substrate stiffness during chondrogenic differentiation.
Acta Biomater. 2019 Apr 15;89:73-83. doi: 10.1016/j.actbio.2019.03.002. Epub 2019 Mar 4.
9
Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels.
Biomaterials. 2022 Jul;286:121606. doi: 10.1016/j.biomaterials.2022.121606. Epub 2022 May 28.

引用本文的文献

1
The mechanobiology of extracellular matrix: a focus on thrombospondins.
Cell Commun Signal. 2025 Jul 25;23(1):354. doi: 10.1186/s12964-025-02365-y.
3
Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells.
Biomacromolecules. 2024 Oct 14;25(10):6319-6337. doi: 10.1021/acs.biomac.4c00835. Epub 2024 Sep 16.
5
Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers.
J R Soc Interface. 2023 Jul;20(204):20230160. doi: 10.1098/rsif.2023.0160. Epub 2023 Jul 5.
8
Toward Hierarchical Assembly of Aligned Cell Sheets into a Conical Cardiac Ventricle Using Microfabricated Elastomers.
Adv Biol (Weinh). 2022 Nov;6(11):e2101165. doi: 10.1002/adbi.202101165. Epub 2022 Jul 7.
9
A preliminary evaluation of in vivo response to a filament-wound macroporous collagen midurethral sling in an ovine model.
J Biomed Mater Res B Appl Biomater. 2022 Dec;110(12):2676-2685. doi: 10.1002/jbm.b.35120. Epub 2022 Jul 2.
10
Mesenchymal Stem Cell Delivery via Topographically Tenoinductive Collagen Biotextile Enhances Regeneration of Segmental Tendon Defects.
Am J Sports Med. 2022 Jul;50(8):2281-2291. doi: 10.1177/03635465221097939. Epub 2022 Jun 1.

本文引用的文献

1
Effects of fiber alignment on stem cells-fibrous scaffold interactions.
J Mater Chem B. 2015 Apr 28;3(16):3358-3366. doi: 10.1039/c5tb00026b. Epub 2015 Mar 23.
2
Computer aided biomanufacturing of mechanically robust pure collagen meshes with controlled macroporosity.
Biofabrication. 2015 Jul 22;7(3):035005. doi: 10.1088/1758-5090/7/3/035005.
4
Effects of Two Different Rhodiola rosea Extracts on Primary Human Visceral Adipocytes.
Molecules. 2015 May 11;20(5):8409-28. doi: 10.3390/molecules20058409.
5
MicroRNA29a regulates IL-33-mediated tissue remodelling in tendon disease.
Nat Commun. 2015 Apr 10;6:6774. doi: 10.1038/ncomms7774.
7
Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles.
Adv Funct Mater. 2014 Sep 24;24(36):5762-5770. doi: 10.1002/adfm.201400828.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验