Suppr超能文献

细胞重编程诱导多能性的转录和表观遗传机制。

Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.

作者信息

van den Hurk Mark, Kenis Gunter, Bardy Cedric, van den Hove Daniel L, Gage Fred H, Steinbusch Harry W, Rutten Bart P

机构信息

Department of Psychiatry & Neuropsychology, Division of Translational Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands.

European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, 6200 MD, The Netherlands.

出版信息

Epigenomics. 2016 Aug;8(8):1131-49. doi: 10.2217/epi-2016-0032. Epub 2016 Jul 15.

Abstract

Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties.

摘要

强制异位表达多能性相关基因组合,如Oct4、Sox2、Klf4和c-Myc,可将体细胞重编程为诱导多能干细胞(iPSC)。iPSC具有显著的增殖能力,且能够重新分化为任何细胞谱系,这使得这些细胞成为体外生成多种人体组织的有前景的工具。然而,多能性诱导是一个低效的过程,因为经历重编程的细胞需要克服发育过程中形成的表观遗传障碍。最近的研究为驱动体细胞重编程为iPSC的分子机制提供了新的线索。在此,我们介绍了关于多能性诱导的转录和表观遗传调控的当前知识,并讨论了表观遗传状态的变异性如何影响iPSC的固有生物学特性。

相似文献

1
Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.
Epigenomics. 2016 Aug;8(8):1131-49. doi: 10.2217/epi-2016-0032. Epub 2016 Jul 15.
3
Cellular trajectories and molecular mechanisms of iPSC reprogramming.
Curr Opin Genet Dev. 2018 Oct;52:77-85. doi: 10.1016/j.gde.2018.06.002. Epub 2018 Jun 17.
4
The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.
J Genet Genomics. 2015 Dec 20;42(12):661-70. doi: 10.1016/j.jgg.2015.10.001. Epub 2015 Oct 23.
5
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2.
Nature. 2012 Aug 30;488(7413):652-5. doi: 10.1038/nature11333.
6
Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules.
Cell Stem Cell. 2019 Feb 7;24(2):328-341.e9. doi: 10.1016/j.stem.2018.11.014. Epub 2018 Dec 13.
7
Going up the hill: chromatin-based barriers to epigenetic reprogramming.
FEBS J. 2021 Aug;288(16):4798-4811. doi: 10.1111/febs.15628. Epub 2020 Dec 6.
8
The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming.
Nature. 2012 Aug 16;488(7411):409-13. doi: 10.1038/nature11272.
9
Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family.
Stem Cell Reports. 2016 Jul 12;7(1):43-54. doi: 10.1016/j.stemcr.2016.05.014. Epub 2016 Jun 30.

引用本文的文献

1
PRDM1 promotes the stemness of gastric cancer cells by enhancing the transactivation of Myc.
Transl Oncol. 2025 Jun 17;59:102443. doi: 10.1016/j.tranon.2025.102443.
3
Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair.
Int J Mol Sci. 2025 Mar 27;26(7):3063. doi: 10.3390/ijms26073063.
4
Modulating DNA Polα Enhances Cell Reprogramming Across Species.
bioRxiv. 2024 Sep 20:2024.09.19.613993. doi: 10.1101/2024.09.19.613993.
7
Partial cellular reprogramming: A deep dive into an emerging rejuvenation technology.
Aging Cell. 2024 Feb;23(2):e14039. doi: 10.1111/acel.14039. Epub 2023 Dec 1.
8
Vitamin B is a limiting factor for induced cellular plasticity and tissue repair.
Nat Metab. 2023 Nov;5(11):1911-1930. doi: 10.1038/s42255-023-00916-6. Epub 2023 Nov 16.
9
Direct Lineage Reprogramming for Induced Keratinocyte Stem Cells: A Potential Approach for Skin Repair.
Stem Cells Transl Med. 2023 May 15;12(5):245-257. doi: 10.1093/stcltm/szad019.

本文引用的文献

1
Whole-genome mutational burden analysis of three pluripotency induction methods.
Nat Commun. 2016 Feb 19;7:10536. doi: 10.1038/ncomms10536.
2
Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity.
Nat Methods. 2016 Mar;13(3):229-232. doi: 10.1038/nmeth.3728. Epub 2016 Jan 11.
3
Genome-wide characterization of the routes to pluripotency.
Nature. 2014 Dec 11;516(7530):198-206. doi: 10.1038/nature14046.
4
Divergent reprogramming routes lead to alternative stem-cell states.
Nature. 2014 Dec 11;516(7530):192-7. doi: 10.1038/nature14047.
6
Small RNA changes en route to distinct cellular states of induced pluripotency.
Nat Commun. 2014 Dec 10;5:5522. doi: 10.1038/ncomms6522.
8
Small molecules facilitate rapid and synchronous iPSC generation.
Nat Methods. 2014 Nov;11(11):1170-6. doi: 10.1038/nmeth.3142. Epub 2014 Sep 24.
9
Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA.
Nat Chem Biol. 2014 Jul;10(7):574-81. doi: 10.1038/nchembio.1532. Epub 2014 May 18.
10
Distinct roles of the methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells.
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1361-6. doi: 10.1073/pnas.1322921111. Epub 2014 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验