Institute of Biotechnology and Department of Biological Sciences, Viikinkaari 1, 00014 University of Helsinki, Finland.
Department of Medical Microbiology, Laboratory of Clinical Virology, Academic Medical Center, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
Nat Commun. 2016 Jul 20;7:11387. doi: 10.1038/ncomms11387.
The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.
研究不足的微小核糖核酸病毒,人类肠道病毒 3(HPeV3)可引起新生儿败血症,目前尚无治疗方法。我们以 4.3 埃的分辨率解析了 HPeV3 自身的结构,以及在 15 埃的分辨率下与人类单克隆抗体 Fabs 的复合物结构,展示了预期的微小核糖核酸病毒衣壳结构,具有三个不同的特征。首先,通过非对称重构证实,HPeV3 RNA 基因组的 60 个位点中有 25%高度有序,与衣壳蛋白 VP1 和 VP3 的保守区域相互作用。其次,VP0 N 端稳定衣壳内表面,与其他微小核糖核酸病毒不同,VP0 在作为 VP4 排出时,它形成一个 RNA 易位通道。最后,VP1 的疏水性口袋,即抗微小核糖核酸病毒药物 pleconaril 的结合位点被阻断,因此不适合开发抗病毒药物。总之,这些结果为中和抗体的开发、基于靶向 RNA-蛋白质相互作用的抗病毒药物以及基于 RNA 成核的病毒组装的剖析提供了一个方向。