Lagu Tara, Pekow Penelope S, Shieh Meng-Shiou, Stefan Mihaela, Pack Quinn R, Kashef Mohammad Amin, Atreya Auras R, Valania Gregory, Slawsky Mara T, Lindenauer Peter K
From the Center for Quality of Care Research (T.L., P.S.P., M.-S.S., M.S., Q.R.P., G.V., M.T.S., P.K.L.), Division of Hospital Medicine, Department of Medicine (T.L., M.S., P.K.L.), and Division of Cardiology (Q.R.P., M.A.K., A.R.A., G.V., M.T.S.), Baystate Medical Center, Springfield, MA; Department of Medicine, Tufts University School of Medicine, Boston, MA (T.L., M.S., Q.R.P., M.A.K., A.R.A., G.V., M.T.S., P.K.L.); and School of Public Health and Health Sciences, University of Massachusetts-Amherst (P.S.P.).
Circ Heart Fail. 2016 Aug;9(8). doi: 10.1161/CIRCHEARTFAILURE.115.002912.
Heart failure (HF) inpatient mortality prediction models can help clinicians make treatment decisions and researchers conduct observational studies; however, published models have not been validated in external populations.
We compared the performance of 7 models that predict inpatient mortality in patients hospitalized with acute decompensated heart failure: 4 HF-specific mortality prediction models developed from 3 clinical databases (ADHERE [Acute Decompensated Heart Failure National Registry], EFFECT study [Enhanced Feedback for Effective Cardiac Treatment], and GWTG-HF registry [Get With the Guidelines-Heart Failure]); 2 administrative HF mortality prediction models (Premier, Premier+); and a model that uses clinical data but is not specific for HF (Laboratory-Based Acute Physiology Score [LAPS2]). Using a multihospital, electronic health record-derived data set (HealthFacts [Cerner Corp], 2010-2012), we identified patients ≥18 years admitted with HF. Of 13 163 eligible patients, median age was 74 years; half were women; and 27% were black. In-hospital mortality was 4.3%. Model-predicted mortality ranges varied: Premier+ (0.8%-23.1%), LAPS2 (0.7%-19.0%), ADHERE (1.2%-17.4%), EFFECT (1.0%-12.8%), GWTG-Eapen (1.2%-13.8%), and GWTG-Peterson (1.1%-12.8%). The LAPS2 and Premier models outperformed the clinical models (C statistics: LAPS2 0.80 [95% confidence interval 0.78-0.82], Premier models 0.81 [95% confidence interval 0.79-0.83] and 0.76 [95% confidence interval 0.74-0.78], and clinical models 0.68 to 0.70).
Four clinically derived, inpatient, HF mortality models exhibited similar performance, with C statistics near 0.70. Three other models, 1 developed in electronic health record data and 2 developed in administrative data, also were predictive, with C statistics from 0.76 to 0.80. Because every model performed acceptably, the decision to use a given model should depend on practical concerns and intended use.
心力衰竭(HF)住院患者死亡率预测模型有助于临床医生做出治疗决策,也有助于研究人员开展观察性研究;然而,已发表的模型尚未在外部人群中得到验证。
我们比较了7种预测急性失代偿性心力衰竭住院患者住院死亡率的模型的性能:4种基于3个临床数据库(ADHERE[急性失代偿性心力衰竭国家注册数据库]、EFFECT研究[有效心脏治疗强化反馈研究]和GWTG-HF注册数据库[遵循指南-心力衰竭])开发的特定于HF的死亡率预测模型;2种行政HF死亡率预测模型(Premier、Premier+);以及一种使用临床数据但并非特定于HF的模型(基于实验室的急性生理学评分[LAPS2])。利用一个多医院的、源自电子健康记录的数据集(HealthFacts[erner公司,2010 - 2012年]),我们确定了年龄≥18岁的HF住院患者。在13163名符合条件的患者中,中位年龄为74岁;一半为女性;27%为黑人。住院死亡率为4.3%。模型预测的死亡率范围各不相同:Premier+(0.8% - 23.1%)、LAPS2(0.7% - 19.0%)、ADHERE(1.2% - 17.4%)、EFFECT(1.0% - 12.8%)、GWTG - Eapen(1.2% - 13.8%)和GWTG - Peterson(1.1% - 12.8%)。LAPS2和Premier模型的表现优于临床模型(C统计量:LAPS2为0.80[95%置信区间0.78 - 0.82],Premier模型分别为0.81[95%置信区间0.79 - 0.83]和0.76[95%置信区间0.74 - 0.78],临床模型为0.68至0.70)。
4种临床衍生的住院HF死亡率模型表现出相似的性能,C统计量接近0.70。另外3种模型,1种是在电子健康记录数据中开发的,2种是在行政数据中开发的,也具有预测性,C统计量在0.76至0.80之间。由于每个模型的表现都可以接受,因此选择使用特定模型的决定应取决于实际考虑因素和预期用途。