Suppr超能文献

CRISPR-Cas9技术及其在血液系统疾病中的应用。

CRISPR-Cas9 technology and its application in haematological disorders.

作者信息

Zhang Han, McCarty Nami

机构信息

The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas-Health Science Centre at Houston, Houston, TX, USA.

出版信息

Br J Haematol. 2016 Oct;175(2):208-225. doi: 10.1111/bjh.14297. Epub 2016 Sep 13.

Abstract

The recent advent of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (Cas9) system for precise genome editing has revolutionized methodologies in haematology and oncology studies. CRISPR-Cas9 technology can be used to remove and correct genes or mutations, and to introduce site-specific therapeutic genes in human cells. Inherited haematological disorders represent ideal targets for CRISPR-Cas9-mediated gene therapy. Correcting disease-causing mutations could alleviate disease-related symptoms in the near future. The CRISPR-Cas9 system is also a useful tool for delineating molecular mechanisms involving haematological malignancies. Prior to the use of CRISPR-Cas9-mediated gene correction in humans, appropriate delivery systems with higher efficiency and specificity must be identified, and ethical guidelines for applying the technology with controllable safety must be established. Here, the latest applications of CRISPR-Cas9 technology in haematological disorders, current challenges and future directions are reviewed and discussed.

摘要

用于精确基因组编辑的成簇规律间隔短回文重复序列(CRISPR)-CRISPR相关蛋白9(Cas9)系统的近期出现,彻底改变了血液学和肿瘤学研究的方法。CRISPR-Cas9技术可用于去除和纠正基因或突变,并在人类细胞中引入位点特异性治疗基因。遗传性血液疾病是CRISPR-Cas9介导的基因治疗的理想靶点。在不久的将来,纠正致病突变可能会减轻疾病相关症状。CRISPR-Cas9系统也是阐明血液系统恶性肿瘤分子机制的有用工具。在将CRISPR-Cas9介导的基因校正应用于人类之前,必须确定具有更高效率和特异性的合适递送系统,并建立以可控安全性应用该技术的伦理准则。在此,对CRISPR-Cas9技术在血液疾病中的最新应用、当前挑战和未来方向进行了综述和讨论。

相似文献

1
CRISPR-Cas9 technology and its application in haematological disorders.
Br J Haematol. 2016 Oct;175(2):208-225. doi: 10.1111/bjh.14297. Epub 2016 Sep 13.
2
Therapeutic gene editing in haematological disorders with CRISPR/Cas9.
Br J Haematol. 2019 Jun;185(5):821-835. doi: 10.1111/bjh.15851. Epub 2019 Mar 12.
3
4
Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders.
Gene Ther. 2022 May;29(5):207-216. doi: 10.1038/s41434-021-00247-9. Epub 2021 Mar 9.
5
CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
J Cell Physiol. 2019 Aug;234(8):12267-12277. doi: 10.1002/jcp.27972. Epub 2019 Jan 30.
6
CRISPR-Cas9 in genome editing: Its function and medical applications.
J Cell Physiol. 2019 May;234(5):5751-5761. doi: 10.1002/jcp.27476. Epub 2018 Oct 26.
7
CRISPR/Cas9 Technology in Translational Biomedicine.
Cell Physiol Biochem. 2020 Apr 17;54(3):354-370. doi: 10.33594/000000224.
8
Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy.
Hum Gene Ther. 2024 Oct;35(19-20):781-797. doi: 10.1089/hum.2024.020.
9
Therapeutic Genome Editing and In Vivo Delivery.
AAPS J. 2021 Jun 2;23(4):80. doi: 10.1208/s12248-021-00613-w.
10
Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy.
Transgenic Res. 2021 Apr;30(2):129-141. doi: 10.1007/s11248-020-00232-9. Epub 2021 Feb 20.

引用本文的文献

2
Development of a novel gene editing lexicon for hemophilia: methodology and results.
Res Pract Thromb Haemost. 2025 Feb 28;9(2):102710. doi: 10.1016/j.rpth.2025.102710. eCollection 2025 Feb.
4
Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives.
Biomolecules. 2024 Jul 15;14(7):854. doi: 10.3390/biom14070854.
5
Machine Learning Meets Cancer.
Cancers (Basel). 2024 Mar 8;16(6):1100. doi: 10.3390/cancers16061100.
6
Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing.
Mol Biotechnol. 2024 Nov;66(11):3092-3116. doi: 10.1007/s12033-023-00932-7. Epub 2023 Nov 27.
7
An Update on the Application of CRISPR Technology in Clinical Practice.
Mol Biotechnol. 2024 Feb;66(2):179-197. doi: 10.1007/s12033-023-00724-z. Epub 2023 Jun 3.
8
CRISPR medicine for blood disorders: Progress and challenges in delivery.
Front Genome Ed. 2023 Jan 6;4:1037290. doi: 10.3389/fgeed.2022.1037290. eCollection 2022.
9
10
The genome editing revolution: review.
J Genet Eng Biotechnol. 2020 Oct 29;18(1):68. doi: 10.1186/s43141-020-00078-y.

本文引用的文献

1
CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape.
Cell Rep. 2016 Apr 19;15(3):481-489. doi: 10.1016/j.celrep.2016.03.042. Epub 2016 Apr 7.
2
Programmable RNA Tracking in Live Cells with CRISPR/Cas9.
Cell. 2016 Apr 7;165(2):488-96. doi: 10.1016/j.cell.2016.02.054. Epub 2016 Mar 17.
3
CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse.
EMBO Mol Med. 2016 May 2;8(5):477-88. doi: 10.15252/emmm.201506039. Print 2016 May.
4
Welcome to the CRISPR zoo.
Nature. 2016 Mar 10;531(7593):160-3. doi: 10.1038/531160a.
6
MUC1-C drives MYC in multiple myeloma.
Blood. 2016 May 26;127(21):2587-97. doi: 10.1182/blood-2015-07-659151. Epub 2016 Feb 23.
7
Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells.
Cell Rep. 2016 Mar 1;14(8):1858-66. doi: 10.1016/j.celrep.2016.01.059. Epub 2016 Feb 18.
9
Can CRISPR-Cas9 gene drives curb malaria?
Nat Biotechnol. 2016 Feb;34(2):149-50. doi: 10.1038/nbt.3473.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验