Suppr超能文献

基于平板的多样性子集筛选第二代:用于高通量筛选大型化合物文件的改进范式。

Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files.

作者信息

Bell Andrew S, Bradley Joseph, Everett Jeremy R, Loesel Jens, McLoughlin David, Mills James, Peakman Marie-Claire, Sharp Robert E, Williams Christine, Zhu Hongyao

机构信息

Pfizer Worldwide Research & Development, Sandwich, Kent, UK.

Imperial College, London, UK.

出版信息

Mol Divers. 2016 Nov;20(4):789-803. doi: 10.1007/s11030-016-9692-9. Epub 2016 Sep 8.

Abstract

High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.

摘要

高通量筛选(HTS)是一种用于先导化合物和探针发现的有效方法,在工业界和学术界广泛应用于识别新型化学物质并启动药物发现过程。然而,高通量筛选可能耗时且成本高昂,因此人们研究了使用子集作为筛选整个化合物库的有效替代方法。子集可以基于化学多样性、分子性质、生物活性多样性或生物靶点聚焦来选择。此前,我们描述了一种新型的子集筛选形式:基于板的多样性子集(PBDS)筛选,其中筛选子集通过板选择构建(而非逐个挑选化合物),使用基于板选择化合物质量和化学多样性的算法。在本文中,我们描述了构建更新子集的第二代方法:PBDS2,它同时使用板和单个化合物选择,在仅选择相同数量的板进行筛选的情况下,对筛选文件的化学空间具有更好的覆盖。我们描述了PBDS2的验证及其在命中和先导化合物发现中的成功应用。PBDS2筛选成为辉瑞公司用于先导化合物发现的单例(每孔一种化合物)高通量筛选的默认模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be0a/5055576/85a6b83b00b5/11030_2016_9692_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验