Suppr超能文献

生存数据预测生物标志物研究中的功效计算策略。

Strategies for power calculations in predictive biomarker studies in survival data.

作者信息

Chen Dung-Tsa, Huang Po-Yu, Lin Hui-Yi, Haura Eric B, Antonia Scott J, Cress W Douglas, Gray Jhanelle E

机构信息

Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Computational Intelligence Technology Center, Industrial Technology Research Institute, Taichung City, Taiwan.

出版信息

Oncotarget. 2016 Dec 6;7(49):80373-80381. doi: 10.18632/oncotarget.12124.

Abstract

PURPOSE

Biomarkers and genomic signatures represent potentially predictive tools for precision medicine. Validation of predictive biomarkers in prospective or retrospective studies requires statistical justification of power and sample size. However, the design of these studies is complex and the statistical methods and associated software are limited, especially in survival data. Herein, we address common statistical design issues relevant to these two types of studies and provide guidance and a general template for analysis.

METHODS

A statistical interaction effect in the Cox proportional hazards model is used to describe predictive biomarkers. The analytic form by Peterson et al. and Lachin is utilized to calculate the statistical power for both prospective and retrospective studies.

RESULTS

We demonstrate that the common mistake of using only Hazard Ratio's Ratio (HRR) or two hazard ratios (HRs) can mislead power calculations. We establish that the appropriate parameter settings for prospective studies require median survival time (MST) in 4 subgroups (treatment and control in positive biomarker, treatment and control in negative biomarker). For the retrospective study which has fixed survival time and censored status, we develop a strategy to harmonize the hypothesized parameters and the study cohort. Moreover, we provide an easily-adapted R software application to generate a template of statistical plan for predictive biomarker validation so investigators can easily incorporate into their study proposals.

CONCLUSION

Our study provides guidance and software to help biostatisticians and clinicians design sound clinical studies for testing predictive biomarkers.

摘要

目的

生物标志物和基因组特征代表了精准医学中潜在的预测工具。在前瞻性或回顾性研究中验证预测性生物标志物需要对检验效能和样本量进行统计学论证。然而,这些研究的设计很复杂,统计方法及相关软件有限,尤其是在生存数据方面。在此,我们阐述与这两类研究相关的常见统计设计问题,并提供分析指导和通用模板。

方法

使用Cox比例风险模型中的统计交互作用效应来描述预测性生物标志物。采用Peterson等人和Lachin的分析形式来计算前瞻性和回顾性研究的统计检验效能。

结果

我们证明仅使用风险比的比值(HRR)或两个风险比(HRs)的常见错误会误导检验效能计算。我们确定前瞻性研究的合适参数设置需要4个亚组的中位生存时间(MST)(阳性生物标志物组的治疗组和对照组、阴性生物标志物组的治疗组和对照组)。对于具有固定生存时间和删失状态的回顾性研究,我们制定了一种协调假设参数和研究队列的策略。此外,我们提供了一个易于改编的R软件应用程序,以生成预测性生物标志物验证的统计计划模板,以便研究人员能够轻松地将其纳入研究方案中。

结论

我们的研究提供了指导和软件,以帮助生物统计学家和临床医生设计合理的临床研究来检验预测性生物标志物。

相似文献

1
Strategies for power calculations in predictive biomarker studies in survival data.
Oncotarget. 2016 Dec 6;7(49):80373-80381. doi: 10.18632/oncotarget.12124.
2
Power estimation in biomarker studies where events are already observed.
Clin Trials. 2017 Dec;14(6):621-628. doi: 10.1177/1740774517723830. Epub 2017 Aug 4.
3
Biomarker threshold adaptive designs for survival endpoints.
J Biopharm Stat. 2018;28(6):1038-1054. doi: 10.1080/10543406.2018.1434191. Epub 2018 Feb 13.
4
5
Estimation of treatment effect in two-stage confirmatory oncology trials of personalized medicines.
Stat Med. 2017 May 30;36(12):1843-1861. doi: 10.1002/sim.7272. Epub 2017 Mar 17.
6
On Enrichment Strategies for Biomarker Stratified Clinical Trials.
J Biopharm Stat. 2018;28(2):292-308. doi: 10.1080/10543406.2017.1379532. Epub 2017 Oct 30.
7
Power and sample size calculations for interval-censored survival analysis.
Stat Med. 2016 Apr 15;35(8):1390-400. doi: 10.1002/sim.6832. Epub 2015 Dec 7.
8
Statistical Methods for Cardiovascular Researchers.
Circ Res. 2016 Feb 5;118(3):439-53. doi: 10.1161/CIRCRESAHA.115.306305.

本文引用的文献

2
Epidermal growth factor receptor (EGFR) mutation and personalized therapy in advanced nonsmall cell lung cancer (NSCLC).
Target Oncol. 2013 Mar;8(1):27-33. doi: 10.1007/s11523-013-0258-9. Epub 2013 Jan 30.
3
A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients.
Clin Cancer Res. 2013 Mar 15;19(6):1577-86. doi: 10.1158/1078-0432.CCR-12-2321. Epub 2013 Jan 28.
4
Predictive biomarkers in colorectal cancer: usage, validation, and design in clinical trials.
Scand J Gastroenterol. 2012 Mar;47(3):356-62. doi: 10.3109/00365521.2012.640836. Epub 2011 Dec 19.
5
Prognostic and predictive value of a malignancy-risk gene signature in early-stage non-small cell lung cancer.
J Natl Cancer Inst. 2011 Dec 21;103(24):1859-70. doi: 10.1093/jnci/djr420. Epub 2011 Dec 8.
6
Implementing prognostic and predictive biomarkers in CRC clinical trials.
Nat Rev Clin Oncol. 2011 Feb 15;8(4):222-32. doi: 10.1038/nrclinonc.2011.15.
7
EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors.
N Engl J Med. 2010 Oct 28;363(18):1734-9. doi: 10.1056/NEJMoa1007478.
8
Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer.
J Clin Oncol. 2010 Oct 10;28(29):4417-24. doi: 10.1200/JCO.2009.26.4325. Epub 2010 Sep 7.
9
Inhibition of mutated, activated BRAF in metastatic melanoma.
N Engl J Med. 2010 Aug 26;363(9):809-19. doi: 10.1056/NEJMoa1002011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验