Chen Dung-Tsa, Huang Po-Yu, Lin Hui-Yi, Haura Eric B, Antonia Scott J, Cress W Douglas, Gray Jhanelle E
Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
Computational Intelligence Technology Center, Industrial Technology Research Institute, Taichung City, Taiwan.
Oncotarget. 2016 Dec 6;7(49):80373-80381. doi: 10.18632/oncotarget.12124.
Biomarkers and genomic signatures represent potentially predictive tools for precision medicine. Validation of predictive biomarkers in prospective or retrospective studies requires statistical justification of power and sample size. However, the design of these studies is complex and the statistical methods and associated software are limited, especially in survival data. Herein, we address common statistical design issues relevant to these two types of studies and provide guidance and a general template for analysis.
A statistical interaction effect in the Cox proportional hazards model is used to describe predictive biomarkers. The analytic form by Peterson et al. and Lachin is utilized to calculate the statistical power for both prospective and retrospective studies.
We demonstrate that the common mistake of using only Hazard Ratio's Ratio (HRR) or two hazard ratios (HRs) can mislead power calculations. We establish that the appropriate parameter settings for prospective studies require median survival time (MST) in 4 subgroups (treatment and control in positive biomarker, treatment and control in negative biomarker). For the retrospective study which has fixed survival time and censored status, we develop a strategy to harmonize the hypothesized parameters and the study cohort. Moreover, we provide an easily-adapted R software application to generate a template of statistical plan for predictive biomarker validation so investigators can easily incorporate into their study proposals.
Our study provides guidance and software to help biostatisticians and clinicians design sound clinical studies for testing predictive biomarkers.
生物标志物和基因组特征代表了精准医学中潜在的预测工具。在前瞻性或回顾性研究中验证预测性生物标志物需要对检验效能和样本量进行统计学论证。然而,这些研究的设计很复杂,统计方法及相关软件有限,尤其是在生存数据方面。在此,我们阐述与这两类研究相关的常见统计设计问题,并提供分析指导和通用模板。
使用Cox比例风险模型中的统计交互作用效应来描述预测性生物标志物。采用Peterson等人和Lachin的分析形式来计算前瞻性和回顾性研究的统计检验效能。
我们证明仅使用风险比的比值(HRR)或两个风险比(HRs)的常见错误会误导检验效能计算。我们确定前瞻性研究的合适参数设置需要4个亚组的中位生存时间(MST)(阳性生物标志物组的治疗组和对照组、阴性生物标志物组的治疗组和对照组)。对于具有固定生存时间和删失状态的回顾性研究,我们制定了一种协调假设参数和研究队列的策略。此外,我们提供了一个易于改编的R软件应用程序,以生成预测性生物标志物验证的统计计划模板,以便研究人员能够轻松地将其纳入研究方案中。
我们的研究提供了指导和软件,以帮助生物统计学家和临床医生设计合理的临床研究来检验预测性生物标志物。