Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58108, United States.
Acc Chem Res. 2016 Oct 18;49(10):2127-2135. doi: 10.1021/acs.accounts.6b00196. Epub 2016 Sep 26.
Colloidal quantum dots (QDs) are near-ideal nanomaterials for energy conversion and lighting technologies. However, their photophysics exhibits supreme sensitivity to surface passivation and defects, of which control is problematic. The role of passivating ligands in photodynamics remains questionable and is a focus of ongoing research. The optically forbidden nature of surface-associated states makes direct measurements on them challenging. Therefore, computational modeling is imperative for insights into surface passivation and its impact on light-driven processes in QDs. This Account discusses challenges and recent progress in understanding surface effects on the photophysics of QDs addressed via quantum-chemical calculations. We overview different methods, including the effective mass approximation (EMA), time-dependent density functional theory (TDDFT), and multiconfiguration approaches, considering their strengths and weaknesses relevant to modeling of QDs with a complicated surface. We focus on CdSe, PbSe, and Si QDs, where calculations successfully explain experimental trends sensitive to surface defects, doping, and ligands. We show that the EMA accurately describes both linear and nonlinear optical properties of large-sized CdSe QDs (>2.5 nm), while TDDFT is required for smaller QDs where surface effects dominate. Both approaches confirm efficient two-photon absorption enabling applications of QDs as nonlinear optical materials. TDDFT also describes the effects of morphology on the optical response of QDs: the photophysics of stoichiometric, magic-sized XY (X = Cd, Pb; Y = S, Se) QDs is less sensitive to their passivation compared with nonstoichiometric XY QDs. In the latter, surface-driven optically inactive midgap states can be eliminated by anionic ligands, explaining the better emission of metal-enriched QDs compared with nonmetal-enriched QDs. Ideal passivation of magic-sized QDs by amines and phosphine oxides leaves lower-energy transitions intact, while thiol derivatives add ligand-localized trap states to the band gap. Depending on its position, any loss of ligand from the QD's surface also introduces electron or hole traps, decreasing the QD's luminescence. TDDFT investigations of QD-ligand and QD-QD interactions provide an explanation of experimentally detected enhancement of blinking on-times in closely packed Si QDs and establish favorable conditions for hole transfer from the photoexcited CdSe QD to metal-organic dyes. While TDDFT well describes qualitative trends in optical response to stoichiometry and ligand modifications of QDs, it is unable to calculate highly correlated electronic states like biexcitons and magnetic-dopant-derived states. In these cases, multiconfiguration methods are applied to small nanoclusters and the results are extrapolated to larger-sized QDs, providing reasonable explanations of experimental observables. For light-driven dynamics, the electron-phonon couplings are important, and nonadiabatic dynamics (NAD) is applied. NAD based on first-principles calculations is a current grand challenge for the theory. However, it can be accomplished through sets of semiclassical approximations such as surface hopping (SH). We discuss validations of approximations used in photodynamics of ligated and doped QDs. Time-domain DFT-based SH-NAD reveals the ligand's role in ultrafast energy relaxation and the connection between the phonon bottleneck and the Zeno effect in CdSe QDs. The calculated results are helpful in controlling both dissipation and radiative processes in QDs via surface engineering and in explanations of experimental data.
胶体量子点 (QD) 是用于能量转换和照明技术的近乎理想的纳米材料。然而,它们的光物理性质对表面钝化和缺陷极为敏感,而对这些的控制是有问题的。钝化配体在光动力学中的作用仍然存在疑问,这也是当前研究的重点。表面相关态的光学禁带性质使得直接测量它们具有挑战性。因此,对于深入了解表面钝化及其对 QD 中光驱动过程的影响,计算建模是必不可少的。本综述讨论了通过量子化学计算理解 QD 光物理表面效应所面临的挑战和最新进展。我们概述了不同的方法,包括有效质量近似 (EMA)、含时密度泛函理论 (TDDFT) 和多组态方法,考虑了它们在模拟具有复杂表面的 QD 时的优缺点。我们重点介绍了 CdSe、PbSe 和 Si QD,其中计算成功地解释了对表面缺陷、掺杂和配体敏感的实验趋势。我们表明,EMA 可以准确描述大尺寸 CdSe QD (>2.5nm) 的线性和非线性光学性质,而 TDDFT 则适用于表面效应占主导地位的较小 QD。这两种方法都证实了高效的双光子吸收,使 QD 能够用作非线性光学材料。TDDFT 还描述了形态对 QD 光学响应的影响:化学计量、魔术大小 XY (X = Cd、Pb;Y = S、Se) QD 的光物理性质对其钝化的敏感性低于非化学计量 XY QD。在后一种情况下,通过阴离子配体可以消除表面驱动的非活性带隙中间态,从而解释了金属富集 QD 的发射性能优于非金属富集 QD。由胺和氧化膦理想钝化的魔术大小 QD 保留了较低能量的跃迁,而硫醇衍生物则在能带隙中添加了配体定域的陷阱态。无论其位置如何,QD 表面任何配体的损失也会引入电子或空穴陷阱,从而降低 QD 的发光。QD-配体和 QD-QD 相互作用的 TDDFT 研究提供了对紧密堆积 Si QD 中探测到的增强闪烁时间的实验解释,并为从光激发的 CdSe QD 到有机金属染料的空穴转移建立了有利条件。虽然 TDDFT 很好地描述了 QD 对化学计量和配体修饰的光学响应的定性趋势,但它无法计算双激子和磁掺杂衍生态等高度相关的电子态。在这些情况下,多组态方法应用于小纳米团簇,并将结果外推到更大尺寸的 QD,从而对实验可观测结果提供了合理的解释。对于光驱动动力学,电子-声子耦合很重要,非绝热动力学 (NAD) 也得到了应用。基于第一性原理计算的 NAD 是当前理论的一个重大挑战。然而,它可以通过一系列半经典近似方法来完成,例如表面跳跃 (SH)。我们讨论了在配体和掺杂 QD 的光动力学中使用的近似方法的验证。基于时域密度泛函理论的 SH-NAD 揭示了配体在超快能量弛豫中的作用以及 CdSe QD 中声子瓶颈与 Zeno 效应之间的联系。计算结果有助于通过表面工程控制 QD 中的耗散和辐射过程,并解释实验数据。