Suppr超能文献

基因组预测有助于推动基因库的全球战略。

Genomic prediction contributing to a promising global strategy to turbocharge gene banks.

机构信息

Iowa State University, Ames, Iowa 50011, USA.

Kansas State University, Manhattan, Kansas 66506, USA.

出版信息

Nat Plants. 2016 Oct 3;2:16150. doi: 10.1038/nplants.2016.150.

Abstract

The 7.4 million plant accessions in gene banks are largely underutilized due to various resource constraints, but current genomic and analytic technologies are enabling us to mine this natural heritage. Here we report a proof-of-concept study to integrate genomic prediction into a broad germplasm evaluation process. First, a set of 962 biomass sorghum accessions were chosen as a reference set by germplasm curators. With high throughput genotyping-by-sequencing (GBS), we genetically characterized this reference set with 340,496 single nucleotide polymorphisms (SNPs). A set of 299 accessions was selected as the training set to represent the overall diversity of the reference set, and we phenotypically characterized the training set for biomass yield and other related traits. Cross-validation with multiple analytical methods using the data of this training set indicated high prediction accuracy for biomass yield. Empirical experiments with a 200-accession validation set chosen from the reference set confirmed high prediction accuracy. The potential to apply the prediction model to broader genetic contexts was also examined with an independent population. Detailed analyses on prediction reliability provided new insights into strategy optimization. The success of this project illustrates that a global, cost-effective strategy may be designed to assess the vast amount of valuable germplasm archived in 1,750 gene banks.

摘要

基因库中的 740 万份植物标本由于各种资源限制,在很大程度上未得到充分利用,但目前的基因组学和分析技术使我们能够挖掘这一自然遗产。在这里,我们报告了一项概念验证研究,即将基因组预测整合到广泛的种质评估过程中。首先,一组 962 份生物质高粱品种被种质管理员选为参考集。通过高通量基因分型测序(GBS),我们用 340496 个单核苷酸多态性(SNP)对这个参考集进行了遗传特征分析。从参考集中选择了一组 299 份的材料作为训练集,以代表参考集的总体多样性,并且对训练集进行了生物质产量和其他相关性状的表型特征分析。使用该训练集的数据,通过多种分析方法的交叉验证表明,对生物质产量的预测具有很高的准确性。从参考集中选择的 200 份验证集的实证实验证实了预测的准确性。还通过一个独立的群体来检验将预测模型应用于更广泛遗传背景的潜力。对预测可靠性的详细分析为优化策略提供了新的见解。该项目的成功表明,可以设计一种全球、具有成本效益的策略来评估 1750 个基因库中保存的大量有价值的种质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验