Mason R Preston, Jacob Robert F, Shrivastava Sandeep, Sherratt Samuel C R, Chattopadhyay Amitabha
Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA.
Elucida Research LLC, Beverly, MA 01915-0091, USA.
Biochim Biophys Acta. 2016 Dec;1858(12):3131-3140. doi: 10.1016/j.bbamem.2016.10.002. Epub 2016 Oct 5.
Cholesterol crystalline domains characterize atherosclerotic membranes, altering vascular signaling and function. Omega-3 fatty acids reduce membrane lipid peroxidation and subsequent cholesterol domain formation. We evaluated non-peroxidation-mediated effects of eicosapentaenoic acid (EPA), other TG-lowering agents, docosahexaenoic acid (DHA), and other long-chain fatty acids on membrane fluidity, bilayer width, and cholesterol domain formation in model membranes. In membranes prepared at 1.5:1 cholesterol-to-phospholipid (C/P) mole ratio (creating pre-existing domains), EPA, glycyrrhizin, arachidonic acid, and alpha linolenic acid promoted the greatest reductions in cholesterol domains (by 65.5%, 54.9%, 46.8%, and 45.2%, respectively) compared to controls; other treatments had modest effects. EPA effects on cholesterol domain formation were dose-dependent. In membranes with 1:1 C/P (predisposing domain formation), DHA, but not EPA, dose-dependently increased membrane fluidity. DHA also induced cholesterol domain formation without affecting temperature-induced changes in-bilayer unit cell periodicity relative to controls (d-space; 57Å-55Å over 15-30°C). Together, these data suggest simultaneous formation of distinct cholesterol-rich ordered domains and cholesterol-poor disordered domains in the presence of DHA. By contrast, EPA had no effect on cholesterol domain formation and produced larger d-space values relative to controls (60Å-57Å; p<0.05) over the same temperature range, suggesting a more uniform maintenance of lipid dynamics despite the presence of cholesterol. These data indicate that EPA and DHA had different effects on membrane bilayer width, membrane fluidity, and cholesterol crystalline domain formation; suggesting omega-3 fatty acids with differing chain length or unsaturation may differentially influence membrane lipid dynamics and structural organization as a result of distinct phospholipid/sterol interactions.
胆固醇结晶域是动脉粥样硬化膜的特征,会改变血管信号传导和功能。ω-3脂肪酸可减少膜脂质过氧化及随后的胆固醇域形成。我们评估了二十碳五烯酸(EPA)、其他降甘油三酯药物、二十二碳六烯酸(DHA)和其他长链脂肪酸对模型膜的膜流动性、双层宽度和胆固醇域形成的非过氧化介导作用。在以1.5:1胆固醇与磷脂(C/P)摩尔比制备的膜(形成预先存在的域)中,与对照组相比,EPA、甘草甜素、花生四烯酸和α-亚麻酸对胆固醇域的减少作用最大(分别减少65.5%、54.9%、46.8%和45.2%);其他处理的作用较小。EPA对胆固醇域形成的影响呈剂量依赖性。在C/P为1:1的膜(易于形成域)中,DHA而非EPA剂量依赖性地增加膜流动性。DHA还诱导胆固醇域形成,相对于对照组,在温度诱导的双层晶胞周期性变化方面(d间距;15至30°C时从57Å至55Å)没有影响。总之,这些数据表明在存在DHA的情况下会同时形成不同的富含胆固醇的有序域和胆固醇含量低的无序域。相比之下,在相同温度范围内,EPA对胆固醇域形成没有影响,相对于对照组产生更大的d间距值(60Å至57Å;p<0.05),这表明尽管存在胆固醇,但脂质动力学能得到更均匀的维持。这些数据表明EPA和DHA对膜双层宽度、膜流动性和胆固醇结晶域形成有不同影响;这表明链长度或不饱和度不同的ω-3脂肪酸可能由于不同的磷脂/甾醇相互作用而对膜脂质动力学和结构组织产生不同影响。