Choi Gilbert J, Zhu Qilei, Miller David C, Gu Carol J, Knowles Robert R
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Nature. 2016 Nov 10;539(7628):268-271. doi: 10.1038/nature19811. Epub 2016 Oct 12.
Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.
尽管氢原子转移(HAT)催化取得了进展,但目前还没有能够均裂N-烷基酰胺中强氮-氢键(N-H)的分子HAT催化剂。开发酰胺均裂方案的动机源于所得酰胺基自由基的实用性,这些自由基参与各种具有合成用途的转化反应,包括烯烃胺化和定向碳-氢键(C-H)官能化。在后一种过程中——经典霍夫曼-勒夫勒-弗赖塔格反应的一个子集——酰胺基自由基从未活化的脂肪族C-H键中夺取氢原子。尽管这些转化反应很强大,但通常需要对酰胺起始原料进行氧化性N-预官能化以实现高效的酰胺基生成。此外,由于这些N-活化基团常常被并入最终产物中,这些方法通常不适用于直接构建碳-碳(C-C)键。在此,我们报告了一种通过质子耦合电子转移均裂N-烷基酰胺的N-H键来克服这些限制的方法。在该方案中,激发态铱光催化剂和弱磷酸碱协同作用,在一个协同的基元步骤中从酰胺底物中同时夺取一个质子和一个电子。结果表明,所得的酰胺基自由基中间体促进随后的C-H抽象和自由基烷基化步骤。这种C-H烷基化代表了霍夫曼-勒夫勒-弗赖塔格反应的催化变体,使用简单的、未官能化的酰胺来指导新C-C键的形成。鉴于酰胺在药物和天然产物中的普遍性,我们预计该方法将简化含胺目标物的合成和结构修饰。此外,这项研究表明,协同质子耦合电子转移能够实现对传统基于HAT的方法在能量上难以接近的常见有机官能团的均裂活化。