Suppr超能文献

质子耦合电子转移实现的远程C-H键催化烷基化反应。

Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

作者信息

Choi Gilbert J, Zhu Qilei, Miller David C, Gu Carol J, Knowles Robert R

机构信息

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.

出版信息

Nature. 2016 Nov 10;539(7628):268-271. doi: 10.1038/nature19811. Epub 2016 Oct 12.

Abstract

Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using traditional HAT-based approaches.

摘要

尽管氢原子转移(HAT)催化取得了进展,但目前还没有能够均裂N-烷基酰胺中强氮-氢键(N-H)的分子HAT催化剂。开发酰胺均裂方案的动机源于所得酰胺基自由基的实用性,这些自由基参与各种具有合成用途的转化反应,包括烯烃胺化和定向碳-氢键(C-H)官能化。在后一种过程中——经典霍夫曼-勒夫勒-弗赖塔格反应的一个子集——酰胺基自由基从未活化的脂肪族C-H键中夺取氢原子。尽管这些转化反应很强大,但通常需要对酰胺起始原料进行氧化性N-预官能化以实现高效的酰胺基生成。此外,由于这些N-活化基团常常被并入最终产物中,这些方法通常不适用于直接构建碳-碳(C-C)键。在此,我们报告了一种通过质子耦合电子转移均裂N-烷基酰胺的N-H键来克服这些限制的方法。在该方案中,激发态铱光催化剂和弱磷酸碱协同作用,在一个协同的基元步骤中从酰胺底物中同时夺取一个质子和一个电子。结果表明,所得的酰胺基自由基中间体促进随后的C-H抽象和自由基烷基化步骤。这种C-H烷基化代表了霍夫曼-勒夫勒-弗赖塔格反应的催化变体,使用简单的、未官能化的酰胺来指导新C-C键的形成。鉴于酰胺在药物和天然产物中的普遍性,我们预计该方法将简化含胺目标物的合成和结构修饰。此外,这项研究表明,协同质子耦合电子转移能够实现对传统基于HAT的方法在能量上难以接近的常见有机官能团的均裂活化。

相似文献

1
Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.
Nature. 2016 Nov 10;539(7628):268-271. doi: 10.1038/nature19811. Epub 2016 Oct 12.
2
Synthetic Applications of Proton-Coupled Electron Transfer.
Acc Chem Res. 2016 Aug 16;49(8):1546-56. doi: 10.1021/acs.accounts.6b00272. Epub 2016 Jul 29.
3
Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer.
J Am Chem Soc. 2015 Jul 29;137(29):9226-9. doi: 10.1021/jacs.5b05377. Epub 2015 Jul 15.
4
Amide-directed photoredox-catalysed C-C bond formation at unactivated sp C-H bonds.
Nature. 2016 Nov 10;539(7628):272-275. doi: 10.1038/nature19810. Epub 2016 Oct 12.
5
Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer.
J Am Chem Soc. 2015 Oct 28;137(42):13492-5. doi: 10.1021/jacs.5b09671. Epub 2015 Oct 16.
6
PCET-Enabled Olefin Hydroamidation Reactions with -Alkyl Amides.
ACS Catal. 2019 May 3;9(5):4502-4507. doi: 10.1021/acscatal.9b00966. Epub 2019 Apr 17.
7
C-H Alkylation via Multisite-Proton-Coupled Electron Transfer of an Aliphatic C-H Bond.
J Am Chem Soc. 2019 Aug 21;141(33):13253-13260. doi: 10.1021/jacs.9b06834. Epub 2019 Aug 12.
8
Iridium-catalyzed intermolecular hydroamination of unactivated aliphatic alkenes with amides and sulfonamides.
J Am Chem Soc. 2012 Jul 25;134(29):11960-3. doi: 10.1021/ja3052848. Epub 2012 Jul 16.
9
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
10
Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization.
Nature. 2015 Jan 29;517(7536):600-4. doi: 10.1038/nature14127.

引用本文的文献

2
Vinyl cyclopropanes as a unifying platform for enantioselective remote difunctionalization of alkenes.
Nat Commun. 2025 Jul 29;16(1):6958. doi: 10.1038/s41467-025-61363-3.
3
Recent advances in amidyl radical-mediated photocatalytic direct intermolecular hydrogen atom transfer.
Beilstein J Org Chem. 2025 Jun 27;21:1306-1323. doi: 10.3762/bjoc.21.100. eCollection 2025.
4
Iridium Polypyridyl Carboxylates as Excited-State PCET Catalysts for the Functionalization of Unactivated C-H Bonds.
J Am Chem Soc. 2025 Jun 18;147(24):20703-20715. doi: 10.1021/jacs.5c04000. Epub 2025 Jun 10.
5
Electrostatic Work Causes Unexpected Reactivity in Ionic Photoredox Catalysts in Low Dielectric Constant Solvents.
J Phys Chem B. 2025 Apr 17;129(15):3895-3901. doi: 10.1021/acs.jpcb.5c01038. Epub 2025 Apr 3.
7
Acridine/Lewis Acid Complexes as Powerful Photocatalysts: A Combined Experimental and Mechanistic Study.
ACS Catal. 2024 Oct 4;14(19):14574-14585. doi: 10.1021/acscatal.4c04897. Epub 2024 Sep 16.
8
Visible-light-driven net-1,2-hydrogen atom transfer of amidyl radicals to access β-amido ketone derivatives.
Chem Sci. 2024 Dec 3;16(2):962-969. doi: 10.1039/d4sc04997g. eCollection 2025 Jan 2.
9
10
Bidirectional Electron Transfer Strategies for Anti-Markovnikov Olefin Aminofunctionalization via Arylamine Radicals.
ACS Catal. 2024 Aug 17;14(17):13156-13162. doi: 10.1021/acscatal.4c04110. eCollection 2024 Sep 6.

本文引用的文献

1
Palladium-catalysed transannular C-H functionalization of alicyclic amines.
Nature. 2016 Mar 10;531(7593):220-224. doi: 10.1038/nature16957. Epub 2016 Feb 17.
2
Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group.
Science. 2016 Jan 15;351(6270):252-6. doi: 10.1126/science.aad7893.
3
Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer.
J Am Chem Soc. 2015 Oct 28;137(42):13492-5. doi: 10.1021/jacs.5b09671. Epub 2015 Oct 16.
4
O-H hydrogen bonding promotes H-atom transfer from α C-H bonds for C-alkylation of alcohols.
Science. 2015 Sep 25;349(6255):1532-6. doi: 10.1126/science.aac8555. Epub 2015 Aug 27.
5
Catalytic Alkene Carboaminations Enabled by Oxidative Proton-Coupled Electron Transfer.
J Am Chem Soc. 2015 Jul 29;137(29):9226-9. doi: 10.1021/jacs.5b05377. Epub 2015 Jul 15.
6
γ,δ,ε-C(sp(3))-H Functionalization through Directed Radical H-Abstraction.
J Am Chem Soc. 2015 May 13;137(18):5871-4. doi: 10.1021/jacs.5b02065. Epub 2015 Apr 30.
7
Site-selective aliphatic C-H bromination using N-bromoamides and visible light.
J Am Chem Soc. 2014 Oct 15;136(41):14389-92. doi: 10.1021/ja508469u. Epub 2014 Oct 3.
8
Chloride ion-pairing with Ru(II) polypyridyl compounds in dichloromethane.
J Phys Chem A. 2013 Sep 12;117(36):8883-94. doi: 10.1021/jp404838z. Epub 2013 Aug 30.
9
Silver-catalyzed radical aminofluorination of unactivated alkenes in aqueous media.
J Am Chem Soc. 2013 Mar 27;135(12):4640-3. doi: 10.1021/ja400124t. Epub 2013 Mar 19.
10
Practical and innate carbon-hydrogen functionalization of heterocycles.
Nature. 2012 Dec 6;492(7427):95-9. doi: 10.1038/nature11680. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验