State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Pakistan.
Sci Total Environ. 2017 Jan 15;576:646-659. doi: 10.1016/j.scitotenv.2016.10.137. Epub 2016 Oct 29.
In the twenty-first century, chemical and associated industries quest a transition prototype from traditional chemical-based concepts to a greener, sustainable and environmentally-friendlier catalytic alternative, both at the laboratory and industrial scale. In this context, bio-based catalysis offers numerous benefits along with potential biotechnological and environmental applications. The bio-based catalytic processes are energy efficient than conventional methodologies under moderate processing, generating no and negligible secondary waste pollution. Thanks to key scientific advances, now, solid-phase biocatalysts can be economically tailored on a large scale. Nevertheless, it is mandatory to recover and reprocess the enzyme for their commercial feasibility, and immobilization engineering can efficiently accomplish this challenge. The first part of the present review work briefly outlines the immobilization of lignin-modifying enzymes (LMEs) including lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase of white-rot fungi (WRF). Whereas, in the second part, a particular emphasis has been given on the recent achievements of carrier-immobilized LMEs for the degradation, decolorization, or detoxification of industrial dyes and dye-based industrial wastewater effluents.
在二十一世纪,化学和相关工业正在寻求从传统的基于化学的概念向更绿色、可持续和环境友好的催化替代品转变,无论是在实验室规模还是工业规模。在这种情况下,生物催化具有许多优点,同时具有潜在的生物技术和环境应用。与传统方法相比,生物催化过程在温和的处理条件下更节能,不会产生二次废物污染,而且污染程度可忽略不计。由于关键的科学进步,现在可以在大规模上经济地定制固载化生物催化剂。然而,为了实现其商业可行性,必须回收和再加工酶,而固定化工程可以有效地解决这一挑战。本综述工作的第一部分简要概述了木质素修饰酶(LMEs)的固定化,包括木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)和白腐真菌的漆酶(WRF)。而在第二部分,特别强调了近年来载体固定化 LMEs 在降解、脱色或解毒工业染料和基于染料的工业废水方面的最新进展。