Frieda Kirsten L, Linton James M, Hormoz Sahand, Choi Joonhyuk, Chow Ke-Huan K, Singer Zakary S, Budde Mark W, Elowitz Michael B, Cai Long
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2017 Jan 5;541(7635):107-111. doi: 10.1038/nature20777. Epub 2016 Nov 21.
Reconstructing the lineage relationships and dynamic event histories of individual cells within their native spatial context is a long-standing challenge in biology. Many biological processes of interest occur in optically opaque or physically inaccessible contexts, necessitating approaches other than direct imaging. Here we describe a synthetic system that enables cells to record lineage information and event histories in the genome in a format that can be subsequently read out of single cells in situ. This system, termed memory by engineered mutagenesis with optical in situ readout (MEMOIR), is based on a set of barcoded recording elements termed scratchpads. The state of a given scratchpad can be irreversibly altered by CRISPR/Cas9-based targeted mutagenesis, and later read out in single cells through multiplexed single-molecule RNA fluorescence hybridization (smFISH). Using MEMOIR as a proof of principle, we engineered mouse embryonic stem cells to contain multiple scratchpads and other recording components. In these cells, scratchpads were altered in a progressive and stochastic fashion as the cells proliferated. Analysis of the final states of scratchpads in single cells in situ enabled reconstruction of lineage information from cell colonies. Combining analysis of endogenous gene expression with lineage reconstruction in the same cells further allowed inference of the dynamic rates at which embryonic stem cells switch between two gene expression states. Finally, using simulations, we show how parallel MEMOIR systems operating in the same cell could enable recording and readout of dynamic cellular event histories. MEMOIR thus provides a versatile platform for information recording and in situ, single-cell readout across diverse biological systems.
在其原生空间背景下重建单个细胞的谱系关系和动态事件历史是生物学中一个长期存在的挑战。许多感兴趣的生物学过程发生在光学不透明或物理上无法触及的环境中,这就需要采用直接成像以外的方法。在这里,我们描述了一种合成系统,该系统能够使细胞以一种随后可在单细胞原位读出的格式在基因组中记录谱系信息和事件历史。这个系统被称为具有光学原位读出的工程诱变记忆系统(MEMOIR),它基于一组被称为暂存器的条形码记录元件。给定暂存器的状态可以通过基于CRISPR/Cas9的靶向诱变不可逆地改变,随后通过多重单分子RNA荧光杂交(smFISH)在单细胞中读出。以MEMOIR作为原理验证,我们对小鼠胚胎干细胞进行工程改造,使其包含多个暂存器和其他记录组件。在这些细胞中,随着细胞增殖,暂存器以渐进和随机的方式发生改变。对单细胞原位暂存器的最终状态进行分析,能够从细胞集落中重建谱系信息。将内源性基因表达分析与同一细胞中的谱系重建相结合,进一步可以推断胚胎干细胞在两种基因表达状态之间转换的动态速率。最后,通过模拟,我们展示了在同一细胞中运行的并行MEMOIR系统如何能够记录和读出动态细胞事件历史。因此MEMOIR为跨多种生物系统的信息记录和原位单细胞读出提供了一个通用平台。