Suppr超能文献

肠道铜转运蛋白CUA-1是秀丽隐杆线虫全身铜稳态所必需的。

The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans.

作者信息

Chun Haarin, Sharma Anuj Kumar, Lee Jaekwon, Chan Jefferson, Jia Shang, Kim Byung-Eun

机构信息

From the Department of Animal and Avian Sciences.

the Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, and.

出版信息

J Biol Chem. 2017 Jan 6;292(1):1-14. doi: 10.1074/jbc.M116.760876. Epub 2016 Nov 23.

Abstract

Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways.

摘要

铜在正常生长、发育和健康所必需的生化过程中发挥着关键的催化和调节作用。铜代谢缺陷会导致门克斯病和威尔逊病、骨髓神经病以及心血管疾病,并与其他病理生理状态相关。因此,了解生物体控制铜的摄取、分布和利用的机制至关重要。肠道肠细胞是铜吸收进入体内的关键调节点;然而,肠道细胞转运铜以维持机体铜稳态的机制却知之甚少。在这里,我们确定了一种机制,即秀丽隐杆线虫通过与肠外铜水平相协调的肠道铜输出蛋白运输来维持机体铜稳态。具体而言,我们发现,秀丽隐杆线虫中ATP7A/B的同源物CUA-1在铜过载条件下会定位于肠道中类似溶酶体的细胞器(肠颗粒)进行铜解毒,而铜缺乏则导致CUA-1重新分布到基底外侧膜,以便将铜外排到外周组织。肠道颗粒生物发生缺陷的线虫在铜螯合方面表现出缺陷,并且对有毒铜水平的易感性增加。然而,有趣的是,一种缺少部分N端结构域的剪接异构体CUA-1.2无论饮食铜浓度如何,都始终靶向基底外侧膜。我们的研究表明,CUA-1是关键的肠道铜输出蛋白,其运输受到调节以维持全身铜稳态。因此,秀丽隐杆线虫可作为一个整体动物模型系统,用于研究细胞内和细胞间铜运输途径的调节。

相似文献

1
The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans.
J Biol Chem. 2017 Jan 6;292(1):1-14. doi: 10.1074/jbc.M116.760876. Epub 2016 Nov 23.
2
CHCA-1 is a copper-regulated CTR1 homolog required for normal development, copper accumulation, and copper-sensing behavior in .
J Biol Chem. 2018 Jul 13;293(28):10911-10925. doi: 10.1074/jbc.RA118.003503. Epub 2018 May 21.
6
Copper stabilizes the Menkes copper-transporting ATPase (Atp7a) protein expressed in rat intestinal epithelial cells.
Am J Physiol Cell Physiol. 2013 Feb 1;304(3):C257-62. doi: 10.1152/ajpcell.00336.2012. Epub 2012 Nov 21.
8
Function of the Caenorhabditis elegans ABC transporter PGP-2 in the biogenesis of a lysosome-related fat storage organelle.
Mol Biol Cell. 2007 Mar;18(3):995-1008. doi: 10.1091/mbc.e06-08-0685. Epub 2007 Jan 3.
10
Intestinal regulation of copper homeostasis: a developmental perspective.
Am J Clin Nutr. 2008 Sep;88(3):846S-50S. doi: 10.1093/ajcn/88.3.846S.

引用本文的文献

1
Some Properties of the Multicopper Oxidase F21D5.3, an Ortholog of Human Ceruloplasmin.
Int J Mol Sci. 2025 May 16;26(10):4776. doi: 10.3390/ijms26104776.
2
Exogenous prion-like proteins and their potential to trigger cognitive dysfunction.
Mol Syst Biol. 2025 May 27. doi: 10.1038/s44320-025-00114-4.
3
A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2412816122. doi: 10.1073/pnas.2412816122. Epub 2025 Jan 15.
4
Glial controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2320611121. doi: 10.1073/pnas.2320611121. Epub 2024 Sep 17.
5
LYSMD proteins promote activation of Rab32-family GTPases for lysosome-related organelle biogenesis.
J Cell Biol. 2024 Oct 7;223(10). doi: 10.1083/jcb.202402016. Epub 2024 Jul 30.
6
Single-tissue proteomics in reveals proteins resident in intestinal lysosome-related organelles.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2322588121. doi: 10.1073/pnas.2322588121. Epub 2024 Jun 11.
7
Copper Homeostasis in the Model Organism .
Cells. 2024 Apr 23;13(9):727. doi: 10.3390/cells13090727.
8
Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals.
Chem Rev. 2024 May 8;124(9):5846-5929. doi: 10.1021/acs.chemrev.3c00819. Epub 2024 Apr 24.
9
Dysfunction in atox-1 and ceruloplasmin alters labile Cu levels and consequently Cu homeostasis in .
Front Mol Biosci. 2024 Feb 8;11:1354627. doi: 10.3389/fmolb.2024.1354627. eCollection 2024.
10
Lysosome-related organelles contain an expansion compartment that mediates delivery of zinc transporters to promote homeostasis.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2307143121. doi: 10.1073/pnas.2307143121. Epub 2024 Feb 8.

本文引用的文献

1
Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.
Acc Chem Res. 2015 Aug 18;48(8):2434-42. doi: 10.1021/acs.accounts.5b00221. Epub 2015 Jul 28.
2
Synthetic fluorescent probes for studying copper in biological systems.
Chem Soc Rev. 2015 Jul 7;44(13):4400-14. doi: 10.1039/c4cs00346b. Epub 2015 Feb 18.
5
Copper is an endogenous modulator of neural circuit spontaneous activity.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16280-5. doi: 10.1073/pnas.1409796111. Epub 2014 Nov 5.
6
Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas.
Nat Chem Biol. 2014 Dec;10(12):1034-42. doi: 10.1038/nchembio.1662. Epub 2014 Oct 26.
7
Mechanisms of iron metabolism in Caenorhabditis elegans.
Front Pharmacol. 2014 May 21;5:113. doi: 10.3389/fphar.2014.00113. eCollection 2014.
8
Identification of erythroferrone as an erythroid regulator of iron metabolism.
Nat Genet. 2014 Jul;46(7):678-84. doi: 10.1038/ng.2996. Epub 2014 Jun 1.
9
Control of metazoan heme homeostasis by a conserved multidrug resistance protein.
Cell Metab. 2014 Jun 3;19(6):1008-19. doi: 10.1016/j.cmet.2014.03.030. Epub 2014 May 15.
10
A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication.
Development. 2014 Apr;141(8):1767-79. doi: 10.1242/dev.103846. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验