Suppr超能文献

洞穴鱼与眼睛退化的根源

Cavefish and the basis for eye loss.

作者信息

Krishnan Jaya, Rohner Nicolas

机构信息

Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.

Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713). doi: 10.1098/rstb.2015.0487.

Abstract

Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

摘要

动物已经从较为温和的环境到最恶劣的环境中遍布了整个世界,其中一些环境极其极端,以至于只有少数动物能够生存。洞穴环境就构成了这样一项挑战,而专性洞穴动物已经通过进化出多种特征来适应永久黑暗。最常见且研究最多的洞穴特征是眼睛退化和色素沉着总体减少。研究这些特征可以为进化力量如何驱动趋同和退行性适应提供重要见解。盲眼墨西哥丽脂鲤(Astyanax mexicanus)由于遗传和基因组资源的可用性,以及胚胎发育的易处理性(因为不同种群彼此之间仍然可育),已成为研究洞穴进化的有用模型。在这篇综述中,我们以洞穴鱼的眼睛退化为例,概述我们目前对退行性和趋同进化过程的认识。本文是主题为“基因组学时代的进化发育生物学以及形态多样性的起源”特刊的一部分。

相似文献

1
Cavefish and the basis for eye loss.
Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713). doi: 10.1098/rstb.2015.0487.
2
Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations.
J Exp Zool B Mol Dev Evol. 2020 Nov;334(7-8):423-437. doi: 10.1002/jez.b.22977. Epub 2020 Jul 2.
3
Trait Loss in Evolution: What Cavefish Have Taught Us about Mechanisms Underlying Eye Regression.
Integr Comp Biol. 2023 Aug 23;63(2):393-406. doi: 10.1093/icb/icad032.
4
Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, Astyanax mexicanus.
J Exp Zool B Mol Dev Evol. 2020 Nov;334(7-8):405-422. doi: 10.1002/jez.b.22954. Epub 2020 Jun 2.
5
Evolution of the eye transcriptome under constant darkness in Sinocyclocheilus cavefish.
Mol Biol Evol. 2013 Jul;30(7):1527-43. doi: 10.1093/molbev/mst079. Epub 2013 Apr 23.
6
Regressive evolution in Astyanax cavefish.
Annu Rev Genet. 2009;43:25-47. doi: 10.1146/annurev-genet-102108-134216.
7
An epigenetic mechanism for cavefish eye degeneration.
Nat Ecol Evol. 2018 Jul;2(7):1155-1160. doi: 10.1038/s41559-018-0569-4. Epub 2018 May 28.
8
Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration.
J Exp Zool B Mol Dev Evol. 2020 Nov;334(7-8):438-449. doi: 10.1002/jez.b.22923. Epub 2020 Jan 12.
10
Next generation phylogeography of cave and surface Astyanax mexicanus.
Mol Phylogenet Evol. 2014 Oct;79:368-74. doi: 10.1016/j.ympev.2014.06.029. Epub 2014 Jul 8.

引用本文的文献

2
Parallel sensory compensation following independent subterranean colonization by groundwater salamanders ().
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2504850122. doi: 10.1073/pnas.2504850122. Epub 2025 Jun 3.
3
Chromosome-level genome assemblies of five species.
GigaByte. 2025 May 9;2025:gigabyte155. doi: 10.46471/gigabyte.155. eCollection 2025.
5
Mechanisms of social behaviour in the anti-social blind cavefish ().
Proc Biol Sci. 2025 Mar;292(2043):20250052. doi: 10.1098/rspb.2025.0052. Epub 2025 Mar 26.
6
Differentially expressed miRNAs offer new perspective into cave adaptation of Astyanax mexicanus.
Ann N Y Acad Sci. 2025 Apr;1546(1):173-181. doi: 10.1111/nyas.15300. Epub 2025 Mar 13.
7
8
Distinct retinal ganglion cell types in strictly subterranean, naturally microphthalmic mammals.
Proc Biol Sci. 2025 Jan;292(2038):20242586. doi: 10.1098/rspb.2024.2586. Epub 2025 Jan 15.
9
Reduced adult stem cell fate specification led to eye reduction in cave planarians.
Nat Commun. 2025 Jan 2;16(1):304. doi: 10.1038/s41467-024-54478-6.
10
A trade-off in evolution: the adaptive landscape of spiders without venom glands.
Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae048.

本文引用的文献

3
The Sinocyclocheilus cavefish genome provides insights into cave adaptation.
BMC Biol. 2016 Jan 4;14:1. doi: 10.1186/s12915-015-0223-4.
4
The energetic cost of vision and the evolution of eyeless Mexican cavefish.
Sci Adv. 2015 Sep 11;1(8):e1500363. doi: 10.1126/sciadv.1500363. eCollection 2015 Sep.
5
Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions.
Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):9668-73. doi: 10.1073/pnas.1510802112. Epub 2015 Jul 13.
6
Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus.
PLoS One. 2015 Mar 16;10(3):e0119370. doi: 10.1371/journal.pone.0119370. eCollection 2015.
7
Tree of life reveals clock-like speciation and diversification.
Mol Biol Evol. 2015 Apr;32(4):835-45. doi: 10.1093/molbev/msv037. Epub 2015 Mar 3.
8
Cavefish eye loss in response to an early block in retinal differentiation progression.
Development. 2015 Feb 15;142(4):743-752. doi: 10.1242/dev.114629. Epub 2015 Jan 23.
9
The cavefish genome reveals candidate genes for eye loss.
Nat Commun. 2014 Oct 20;5:5307. doi: 10.1038/ncomms6307.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验