Suppr超能文献

非接触式睡眠监测设备与多导睡眠图对比的验证

Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography.

作者信息

Tal Asher, Shinar Zvika, Shaki David, Codish Shlomi, Goldbart Aviv

机构信息

Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev.

EarlySense Ltd., Ramat Gan, Israel.

出版信息

J Clin Sleep Med. 2017 Mar 15;13(3):517-522. doi: 10.5664/jcsm.6514.

Abstract

STUDY OBJECTIVES

To validate a contact-free system designed to achieve maximal comfort during long-term sleep monitoring, together with high monitoring accuracy.

METHODS

We used a contact-free monitoring system (EarlySense, Ltd., Israel), comprising an under-the-mattress piezoelectric sensor and a smartphone application, to collect vital signs and analyze sleep. Heart rate (HR), respiratory rate (RR), body movement, and calculated sleep-related parameters from the EarlySense (ES) sensor were compared to data simultaneously generated by the gold standard, polysomnography (PSG). Subjects in the sleep laboratory underwent overnight technician-attended full PSG, whereas subjects at home were recorded for 1 to 3 nights with portable partial PSG devices. Data were compared epoch by epoch.

RESULTS

A total of 63 subjects (85 nights) were recorded under a variety of sleep conditions. Compared to PSG, the contact-free system showed similar values for average total sleep time (TST), % wake, % rapid eye movement, and % non-rapid eye movement sleep, with 96.1% and 93.3% accuracy of continuous measurement of HR and RR, respectively. We found a linear correlation between TST measured by the sensor and TST determined by PSG, with a coefficient of 0.98 (R = 0.87). Epoch-by-epoch comparison with PSG in the sleep laboratory setting revealed that the system showed sleep detection sensitivity, specificity, and accuracy of 92.5%, 80.4%, and 90.5%, respectively.

CONCLUSIONS

TST estimates with the contact-free sleep monitoring system were closely correlated with the gold-standard reference. This system shows good sleep staging capability with improved performance over accelerometer-based apps, and collects additional physiological information on heart rate and respiratory rate.

摘要

研究目的

验证一种非接触式系统,该系统旨在在长期睡眠监测期间实现最大舒适度,并具备高监测准确性。

方法

我们使用了一种非接触式监测系统(以色列EarlySense有限公司),该系统包括一个床垫下压电传感器和一个智能手机应用程序,用于收集生命体征并分析睡眠情况。将EarlySense(ES)传感器的心率(HR)、呼吸率(RR)、身体运动以及计算得出的与睡眠相关的参数,与金标准多导睡眠图(PSG)同时生成的数据进行比较。睡眠实验室中的受试者接受了由技术人员全程陪同的整夜全PSG监测,而在家中的受试者则使用便携式部分PSG设备记录1至3晚。逐段比较数据。

结果

共记录了63名受试者(85个夜晚)在各种睡眠条件下的情况。与PSG相比,非接触式系统在平均总睡眠时间(TST)、觉醒百分比、快速眼动百分比和非快速眼动睡眠百分比方面显示出相似的值,HR和RR连续测量的准确率分别为96.1%和93.3%。我们发现传感器测量的TST与PSG确定的TST之间存在线性相关性,系数为0.98(R = 0.87)。在睡眠实验室环境中与PSG进行逐段比较发现,该系统的睡眠检测敏感性、特异性和准确性分别为92.5%、80.4%和90.5%。

结论

非接触式睡眠监测系统的TST估计值与金标准参考密切相关。该系统显示出良好的睡眠分期能力,性能优于基于加速度计的应用程序,并收集了有关心率和呼吸率的额外生理信息。

相似文献

1
Validation of Contact-Free Sleep Monitoring Device with Comparison to Polysomnography.
J Clin Sleep Med. 2017 Mar 15;13(3):517-522. doi: 10.5664/jcsm.6514.
3
Validity of Actigraphy in Measurement of Sleep in Young Adults With Type 1 Diabetes.
J Clin Sleep Med. 2017 May 15;13(5):669-674. doi: 10.5664/jcsm.6580.
5
8
Monitoring healthy and disturbed sleep through smartphone applications: a review of experimental evidence.
Sleep Breath. 2019 Mar;23(1):13-24. doi: 10.1007/s11325-018-1661-3. Epub 2018 Apr 23.
10
A validation study of Fitbit Charge 2™ compared with polysomnography in adults.
Chronobiol Int. 2018 Apr;35(4):465-476. doi: 10.1080/07420528.2017.1413578. Epub 2017 Dec 13.

引用本文的文献

2
Unobtrusive Bed Monitor State of the Art.
Sensors (Basel). 2025 Mar 18;25(6):1879. doi: 10.3390/s25061879.
5
Is sleep the new treatment for pain? Two issues need resolving before deciding.
Sleep. 2024 Jun 13;47(6). doi: 10.1093/sleep/zsae089.
6
The Efficacy of a Multimodal Bedroom-Based 'Smart' Alarm System on Mitigating the Effects of Sleep Inertia.
Clocks Sleep. 2024 Mar 18;6(1):183-199. doi: 10.3390/clockssleep6010013.
8
Recent Advances and Applications of Textile Technology in Patient Monitoring.
Healthcare (Basel). 2023 Nov 29;11(23):3066. doi: 10.3390/healthcare11233066.

本文引用的文献

1
Heart rate variability: a tool to explore the sleeping brain?
Front Neurosci. 2014 Dec 11;8:402. doi: 10.3389/fnins.2014.00402. eCollection 2014.
2
Nocturnal snoring sound analysis in the diagnosis of obstructive sleep apnea in the Chinese Han population.
Sleep Breath. 2015 May;19(2):599-605. doi: 10.1007/s11325-014-1055-0. Epub 2014 Sep 9.
4
An ultrasonic contactless sensor for breathing monitoring.
Sensors (Basel). 2014 Aug 20;14(8):15371-86. doi: 10.3390/s140815371.
5
Reliability and validity testing of automated scoring in obstructive sleep apnea diagnosis with the Embletta X100.
Laryngoscope. 2015 Feb;125(2):493-7. doi: 10.1002/lary.24878. Epub 2014 Aug 14.
6
Automatic sleep classification using a data-driven topic model reveals latent sleep states.
J Neurosci Methods. 2014 Sep 30;235:130-7. doi: 10.1016/j.jneumeth.2014.07.002. Epub 2014 Jul 9.
7
The efficacy of Watch PAT in obstructive sleep apnea syndrome diagnosis.
Eur Arch Otorhinolaryngol. 2015 Jan;272(1):111-6. doi: 10.1007/s00405-014-3097-0. Epub 2014 May 17.
10
Ambulatory models of care for obstructive sleep apnoea: Diagnosis and management.
Respirology. 2013 May;18(4):605-15. doi: 10.1111/resp.12071.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验