Esteva Andre, Kuprel Brett, Novoa Roberto A, Ko Justin, Swetter Susan M, Blau Helen M, Thrun Sebastian
Department of Electrical Engineering, Stanford University, Stanford, California, USA.
Department of Dermatology, Stanford University, Stanford, California, USA.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images-two orders of magnitude larger than previous datasets-consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.
皮肤癌是人类最常见的恶性肿瘤,主要通过肉眼诊断,首先进行初步临床筛查,随后可能进行皮肤镜分析、活检和组织病理学检查。由于皮肤病变外观的细微差异,利用图像对皮肤病变进行自动分类是一项具有挑战性的任务。深度卷积神经网络(CNN)在许多细粒度对象类别中的通用且高度可变的任务方面显示出潜力。在这里,我们展示了使用单个CNN对皮肤病变进行分类的方法,该CNN直接从图像进行端到端训练,仅将像素和疾病标签作为输入。我们使用一个包含129,450张临床图像的数据集训练CNN,该数据集比以前的数据集大两个数量级,包含2032种不同疾病。我们在两个关键的二元分类用例的活检证实的临床图像上,针对21位获得董事会认证的皮肤科医生测试了其性能:角质形成细胞癌与良性脂溢性角化病;恶性黑色素瘤与良性痣。第一个案例代表最常见癌症的识别,第二个案例代表最致命皮肤癌的识别。该CNN在两项任务中均达到了所有测试专家的同等性能,证明了一种人工智能能够以与皮肤科医生相当的水平对皮肤癌进行分类。配备深度神经网络的移动设备有可能将皮肤科医生的服务范围扩展到诊所之外。预计到2021年将有63亿部智能手机订阅(参考文献13),因此有可能提供低成本的普遍重要诊断护理服务。