Suppr超能文献

基于深度神经网络的皮肤癌皮肤科医生级分类。

Dermatologist-level classification of skin cancer with deep neural networks.

作者信息

Esteva Andre, Kuprel Brett, Novoa Roberto A, Ko Justin, Swetter Susan M, Blau Helen M, Thrun Sebastian

机构信息

Department of Electrical Engineering, Stanford University, Stanford, California, USA.

Department of Dermatology, Stanford University, Stanford, California, USA.

出版信息

Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.

Abstract

Skin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories. Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images-two orders of magnitude larger than previous datasets-consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will exist by the year 2021 (ref. 13) and can therefore potentially provide low-cost universal access to vital diagnostic care.

摘要

皮肤癌是人类最常见的恶性肿瘤,主要通过肉眼诊断,首先进行初步临床筛查,随后可能进行皮肤镜分析、活检和组织病理学检查。由于皮肤病变外观的细微差异,利用图像对皮肤病变进行自动分类是一项具有挑战性的任务。深度卷积神经网络(CNN)在许多细粒度对象类别中的通用且高度可变的任务方面显示出潜力。在这里,我们展示了使用单个CNN对皮肤病变进行分类的方法,该CNN直接从图像进行端到端训练,仅将像素和疾病标签作为输入。我们使用一个包含129,450张临床图像的数据集训练CNN,该数据集比以前的数据集大两个数量级,包含2032种不同疾病。我们在两个关键的二元分类用例的活检证实的临床图像上,针对21位获得董事会认证的皮肤科医生测试了其性能:角质形成细胞癌与良性脂溢性角化病;恶性黑色素瘤与良性痣。第一个案例代表最常见癌症的识别,第二个案例代表最致命皮肤癌的识别。该CNN在两项任务中均达到了所有测试专家的同等性能,证明了一种人工智能能够以与皮肤科医生相当的水平对皮肤癌进行分类。配备深度神经网络的移动设备有可能将皮肤科医生的服务范围扩展到诊所之外。预计到2021年将有63亿部智能手机订阅(参考文献13),因此有可能提供低成本的普遍重要诊断护理服务。

相似文献

1
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
2
Deep neural networks are superior to dermatologists in melanoma image classification.
Eur J Cancer. 2019 Sep;119:11-17. doi: 10.1016/j.ejca.2019.05.023. Epub 2019 Aug 8.
6
Ophthalmologist-Level Classification of Fundus Disease With Deep Neural Networks.
Transl Vis Sci Technol. 2020 Jul 10;9(2):39. doi: 10.1167/tvst.9.2.39. eCollection 2020 Jul.
8
Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.
Eur J Cancer. 2021 Oct;156:202-216. doi: 10.1016/j.ejca.2021.06.049. Epub 2021 Sep 8.
10
Superior skin cancer classification by the combination of human and artificial intelligence.
Eur J Cancer. 2019 Oct;120:114-121. doi: 10.1016/j.ejca.2019.07.019. Epub 2019 Sep 10.

引用本文的文献

2
Mapping cancer heterogeneity: a consensus network approach to subtypes and pathways.
Brief Bioinform. 2025 Aug 31;26(5). doi: 10.1093/bib/bbaf452.
3
Potential of automated image analysis for the measurement of vitiligo lesions.
Front Med (Lausanne). 2025 Aug 14;12:1623408. doi: 10.3389/fmed.2025.1623408. eCollection 2025.
4
Knowledge-Informed Machine Learning for Cancer Diagnosis and Prognosis: A Review.
IEEE Trans Autom Sci Eng. 2025;22:10008-10028. doi: 10.1109/tase.2024.3515839. Epub 2024 Dec 18.
5
Digital soil mapping in support of voluntary carbon market programs in agricultural land.
PLoS One. 2025 Sep 2;20(9):e0327895. doi: 10.1371/journal.pone.0327895. eCollection 2025.
7
Advancements and challenges of artificial intelligence in dermatology: a review of applications and perspectives in China.
Front Digit Health. 2025 Aug 13;7:1544520. doi: 10.3389/fdgth.2025.1544520. eCollection 2025.
8
Advancements in Diagnosis of Neoplastic and Inflammatory Skin Diseases: Old and Emerging Approaches.
Diagnostics (Basel). 2025 Aug 20;15(16):2100. doi: 10.3390/diagnostics15162100.
9
An Ingeniously Designed Skin Lesion Classification Model Across Clinical and Dermatoscopic Datasets.
Diagnostics (Basel). 2025 Aug 11;15(16):2011. doi: 10.3390/diagnostics15162011.
10
Applications of Deep Learning Models in Laparoscopy for Gynecology.
Medicina (Kaunas). 2025 Aug 14;61(8):1460. doi: 10.3390/medicina61081460.

本文引用的文献

1
Mastering the game of Go with deep neural networks and tree search.
Nature. 2016 Jan 28;529(7587):484-9. doi: 10.1038/nature16961.
2
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
3
Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012.
JAMA Dermatol. 2015 Oct;151(10):1081-6. doi: 10.1001/jamadermatol.2015.1187.
4
Human-level control through deep reinforcement learning.
Nature. 2015 Feb 26;518(7540):529-33. doi: 10.1038/nature14236.
5
Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms.
Int J Biomed Imaging. 2013;2013:323268. doi: 10.1155/2013/323268. Epub 2013 Dec 23.
6
Prevalence of a history of skin cancer in 2007: results of an incidence-based model.
Arch Dermatol. 2010 Mar;146(3):279-82. doi: 10.1001/archdermatol.2010.4.
7
Melanoma computer-aided diagnosis: reliability and feasibility study.
Clin Cancer Res. 2004 Mar 15;10(6):1881-6. doi: 10.1158/1078-0432.ccr-03-0039.
8
Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis.
Arch Dermatol. 2003 Mar;139(3):361-7; discussion 366. doi: 10.1001/archderm.139.3.361.
9
Diagnostic accuracy of dermoscopy.
Lancet Oncol. 2002 Mar;3(3):159-65. doi: 10.1016/s1470-2045(02)00679-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验