Suppr超能文献

睑板腺细胞分化与更新:睑板腺功能障碍(MGD)新机制的见解

Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD).

作者信息

Hwang Ho Sik, Parfitt Geraint J, Brown Donald J, Jester James V

机构信息

Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States; Department of Ophthalmology, Chuncheon Sacred Heart Hospital, Hallym University, Korea.

Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA, United States.

出版信息

Exp Eye Res. 2017 Oct;163:37-45. doi: 10.1016/j.exer.2017.02.008. Epub 2017 Feb 17.

Abstract

This paper reviews our current understanding of age-related meibomian gland dysfunction (MGD) and the role of the nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARγ), in the regulation of meibomian gland function, meibocyte differentiation and lipid synthesis. The studies suggest that PPARγ is a master regulator of meibocyte differentiation and function, whose expression and nuclear signaling coupled with meibocyte renewal is altered during aging, potentially leading to atrophy of the meibomian gland as seen in clinical MGD. Study of meibomian gland stem cells also suggest that there is a limited number of precursor meibocytes that provide progeny to the acini, that may be susceptible to exhaustion as occurs during aging and other environmental factors. Further study of pathways regulating PPARγ expression and function as well as meibocyte stem cell maintenance may provide clues to establishing cellular and molecular mechanisms underlying MGD and the development of novel therapeutic strategies to treating this disease.

摘要

本文综述了我们目前对年龄相关性睑板腺功能障碍(MGD)的理解,以及核受体过氧化物酶体增殖物激活受体γ(PPARγ)在睑板腺功能调节、睑板腺细胞分化和脂质合成中的作用。研究表明,PPARγ是睑板腺细胞分化和功能的主要调节因子,其表达和核信号传导与睑板腺细胞更新在衰老过程中发生改变,这可能导致临床MGD中所见的睑板腺萎缩。对睑板腺干细胞的研究还表明,为腺泡提供子代的前体睑板腺细胞数量有限,这些细胞可能在衰老和其他环境因素作用下易发生耗竭。进一步研究调节PPARγ表达和功能以及睑板腺干细胞维持的信号通路,可能为揭示MGD的细胞和分子机制以及开发治疗该疾病的新治疗策略提供线索。

相似文献

1
Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD).
Exp Eye Res. 2017 Oct;163:37-45. doi: 10.1016/j.exer.2017.02.008. Epub 2017 Feb 17.
2
Wakayama Symposium: Peroxisome proliferator-activated receptor-gamma (PPARγ) and meibomian gland dysfunction.
Ocul Surf. 2012 Oct;10(4):224-9. doi: 10.1016/j.jtos.2012.07.001. Epub 2012 Jul 25.
3
PPARγ regulates meibocyte differentiation and lipid synthesis of cultured human meibomian gland epithelial cells (hMGEC).
Ocul Surf. 2018 Oct;16(4):463-469. doi: 10.1016/j.jtos.2018.07.004. Epub 2018 Jul 7.
4
PPARγ Regulates Mouse Meibocyte Differentiation and Lipid Synthesis.
Ocul Surf. 2016 Oct;14(4):484-494. doi: 10.1016/j.jtos.2016.08.001. Epub 2016 Aug 12.
5
Meibomian gland stem/progenitor cells: The hunt for gland renewal.
Ocul Surf. 2023 Jul;29:497-507. doi: 10.1016/j.jtos.2023.07.004. Epub 2023 Jul 6.
7
Effects of age and dysfunction on human meibomian glands.
Arch Ophthalmol. 2011 Apr;129(4):462-9. doi: 10.1001/archophthalmol.2011.69.
8
Age-related changes in the meibomian gland.
Exp Eye Res. 2009 Dec;89(6):1021-7. doi: 10.1016/j.exer.2009.08.013. Epub 2009 Sep 4.
9
Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease.
Ophthalmology. 2017 Nov;124(11S):S20-S26. doi: 10.1016/j.ophtha.2017.05.031.
10
Periplocin ameliorates mouse age-related meibomian gland dysfunction through up-regulation of Na/K-ATPase via SRC pathway.
Biomed Pharmacother. 2022 Feb;146:112487. doi: 10.1016/j.biopha.2021.112487. Epub 2021 Dec 6.

引用本文的文献

1
A framework of biomarkers for visual system aging: a consensus statement by the Aging Biomarker Consortium.
Life Med. 2025 Jun 28;4(4):lnaf023. doi: 10.1093/lifemedi/lnaf023. eCollection 2025 Aug.
3
Identification of Meibomian gland stem cell populations and mechanisms of aging.
Nat Commun. 2025 Feb 15;16(1):1663. doi: 10.1038/s41467-025-56907-6.
5
The role of PPAR in fungal keratitis.
Front Immunol. 2024 Dec 23;15:1454463. doi: 10.3389/fimmu.2024.1454463. eCollection 2024.
7
Identification of Meibomian gland stem cell populations and mechanisms of aging.
bioRxiv. 2024 Aug 10:2024.08.09.607015. doi: 10.1101/2024.08.09.607015.
8
Meibomian Gland Shortening Is Associated With Altered Meibum Composition.
Invest Ophthalmol Vis Sci. 2024 Jul 1;65(8):49. doi: 10.1167/iovs.65.8.49.
9
HDAC1/2 and HDAC3 play distinct roles in controlling adult Meibomian gland homeostasis.
Ocul Surf. 2024 Jul;33:39-49. doi: 10.1016/j.jtos.2024.04.005. Epub 2024 Apr 26.
10
Evaluation of Meibomian gland dysfunction using meibography in patients with xeroderma pigmentosum.
Arq Bras Oftalmol. 2024 Mar 4;87(2):e20220319. doi: 10.5935/0004-2749.2022-0319. eCollection 2024.

本文引用的文献

1
PPARγ Regulates Mouse Meibocyte Differentiation and Lipid Synthesis.
Ocul Surf. 2016 Oct;14(4):484-494. doi: 10.1016/j.jtos.2016.08.001. Epub 2016 Aug 12.
2
Renewal of the Holocrine Meibomian Glands by Label-Retaining, Unipotent Epithelial Progenitors.
Stem Cell Reports. 2016 Sep 13;7(3):399-410. doi: 10.1016/j.stemcr.2016.07.010. Epub 2016 Aug 11.
3
Meibomian Gland Dysfunction Model in Hairless Mice Fed a Special Diet With Limited Lipid Content.
Invest Ophthalmol Vis Sci. 2016 Jun 1;57(7):3268-75. doi: 10.1167/iovs.16-19227.
4
Transcriptome analysis of aging mouse meibomian glands.
Mol Vis. 2016 May 24;22:518-27. eCollection 2016.
5
Meibomian gland dysfunction: hyperkeratinization or atrophy?
BMC Ophthalmol. 2015 Dec 17;15 Suppl 1(Suppl 1):156. doi: 10.1186/s12886-015-0132-x.
7
Lineage tracing of stem and progenitor cells of the murine corneal epithelium.
Stem Cells. 2015 Jan;33(1):230-9. doi: 10.1002/stem.1840.
8
Tracing the fate of limbal epithelial progenitor cells in the murine cornea.
Stem Cells. 2015 Jan;33(1):157-69. doi: 10.1002/stem.1769.
9
Effect of desiccating stress on mouse meibomian gland function.
Ocul Surf. 2014 Jan;12(1):59-68. doi: 10.1016/j.jtos.2013.08.002. Epub 2013 Oct 18.
10
Absence of ductal hyper-keratinization in mouse age-related meibomian gland dysfunction (ARMGD).
Aging (Albany NY). 2013 Nov;5(11):825-34. doi: 10.18632/aging.100615.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验