Suppr超能文献

用于心血管疾病研究的基因组编辑

Genome Editing for the Study of Cardiovascular Diseases.

作者信息

Chadwick Alexandra C, Musunuru Kiran

机构信息

Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Curr Cardiol Rep. 2017 Mar;19(3):22. doi: 10.1007/s11886-017-0830-5.

Abstract

PURPOSE OF REVIEW

The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases.

RECENT FINDINGS

The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance.

摘要

综述目的

近期基因组编辑技术的出现带来了诸多机遇,使研究人员能够更轻松地研究多种疾病。本综述将介绍最主要的基因组编辑技术的优缺点,以及专门针对心血管疾病的潜在应用。

最新发现

近期使用可编程核酸酶的基因组编辑工具,如锌指核酸酶、转录激活样效应因子核酸酶和规律成簇的间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9),已迅速应用于在多种细胞和动物模型中操纵基因。近期一些与心血管疾病相关的出版物报道了将特定突变引入疾病模型以进行功能表征和治疗策略测试的案例。基因组编辑技术的最新进展为理解和治疗疾病提供了新方法。在此,我们讨论基因组编辑策略,以轻松表征自然发生的突变,并提供具有潜在临床相关性的策略。

相似文献

1
Genome Editing for the Study of Cardiovascular Diseases.
Curr Cardiol Rep. 2017 Mar;19(3):22. doi: 10.1007/s11886-017-0830-5.
2
Genome Editing: The Recent History and Perspective in Cardiovascular Diseases.
J Am Coll Cardiol. 2017 Dec 5;70(22):2808-2821. doi: 10.1016/j.jacc.2017.10.002.
3
Genome editing in cardiovascular diseases.
Nat Rev Cardiol. 2017 Jan;14(1):11-20. doi: 10.1038/nrcardio.2016.139. Epub 2016 Sep 9.
4
A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9.
Annu Rev Chem Biomol Eng. 2017 Jun 7;8:577-597. doi: 10.1146/annurev-chembioeng-060816-101603. Epub 2017 May 10.
5
CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
Cardiovasc Res. 2020 Apr 1;116(5):894-907. doi: 10.1093/cvr/cvz250.
6
CRISPR-Cas9 system: A new-fangled dawn in gene editing.
Life Sci. 2019 Sep 1;232:116636. doi: 10.1016/j.lfs.2019.116636. Epub 2019 Jul 8.
7
Temperature effect on CRISPR-Cas9 mediated genome editing.
J Genet Genomics. 2017 Apr 20;44(4):199-205. doi: 10.1016/j.jgg.2017.03.004. Epub 2017 Mar 30.
8
Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing.
Curr Atheroscler Rep. 2017 Jul;19(7):32. doi: 10.1007/s11883-017-0668-8.
9
Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.
Curr Cardiol Rev. 2017;13(4):301-304. doi: 10.2174/1573403X13666170804152432.
10
Application of genome editing technologies to the study and treatment of hematological disease.
Adv Biol Regul. 2016 Jan;60:122-134. doi: 10.1016/j.jbior.2015.09.005. Epub 2015 Sep 26.

引用本文的文献

1
Current Landscape of Gene Therapy for the Treatment of Cardiovascular Disorders.
Curr Gene Ther. 2024;24(5):356-376. doi: 10.2174/0115665232268840231222035423.
2
Inclisiran-A Revolutionary Addition to a Cholesterol-Lowering Therapy.
Int J Mol Sci. 2023 Apr 6;24(7):6858. doi: 10.3390/ijms24076858.
3
Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis.
Sci Transl Med. 2022 Nov 2;14(669):eabo1981. doi: 10.1126/scitranslmed.abo1981.
4
The Power of Gene Technologies: 1001 Ways to Create a Cell Model.
Cells. 2022 Oct 14;11(20):3235. doi: 10.3390/cells11203235.
5
hPSC gene editing for cardiac disease therapy.
Pflugers Arch. 2022 Nov;474(11):1123-1132. doi: 10.1007/s00424-022-02751-2. Epub 2022 Sep 27.
6
Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease.
Stem Cell Rev Rep. 2022 Dec;18(8):2593-2605. doi: 10.1007/s12015-022-10385-1. Epub 2022 May 8.
8
CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits.
Lipids Health Dis. 2021 Dec 18;20(1):180. doi: 10.1186/s12944-021-01605-7.
9
Towards chamber specific heart-on-a-chip for drug testing applications.
Adv Drug Deliv Rev. 2020;165-166:60-76. doi: 10.1016/j.addr.2019.12.002. Epub 2020 Jan 7.
10
Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future.
Stem Cells. 2020 Feb;38(2):174-186. doi: 10.1002/stem.3110. Epub 2019 Dec 16.

本文引用的文献

1
A multifunctional AAV-CRISPR-Cas9 and its host response.
Nat Methods. 2016 Oct;13(10):868-74. doi: 10.1038/nmeth.3993. Epub 2016 Sep 5.
3
CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
Arterioscler Thromb Vasc Biol. 2016 May;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub 2016 Mar 3.
4
Structure and Engineering of Francisella novicida Cas9.
Cell. 2016 Feb 25;164(5):950-61. doi: 10.1016/j.cell.2016.01.039. Epub 2016 Feb 11.
5
Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo.
Nat Biotechnol. 2016 Mar;34(3):328-33. doi: 10.1038/nbt.3471. Epub 2016 Feb 1.
6
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice.
Nat Biotechnol. 2016 Mar;34(3):334-8. doi: 10.1038/nbt.3469. Epub 2016 Feb 1.
7
8
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
9
ApoE knockout rabbits: A novel model for the study of human hyperlipidemia.
Atherosclerosis. 2016 Feb;245:187-93. doi: 10.1016/j.atherosclerosis.2015.12.002. Epub 2015 Dec 9.
10
A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):338-43. doi: 10.1073/pnas.1523918113. Epub 2015 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验