Shen Lu, Mickley Loretta J
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2491-2496. doi: 10.1073/pnas.1610708114. Epub 2017 Feb 21.
We develop a statistical model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) ozone concentrations in the eastern United States based on large-scale climate patterns during the previous spring. We find that anomalously high JJA ozone in the East is correlated with these springtime patterns: warm tropical Atlantic and cold northeast Pacific sea surface temperatures (SSTs), as well as positive sea level pressure (SLP) anomalies over Hawaii and negative SLP anomalies over the Atlantic and North America. We then develop a linear regression model to predict JJA MDA8 ozone from 1980 to 2013, using the identified SST and SLP patterns from the previous spring. The model explains ∼45% of the variability in JJA MDA8 ozone concentrations and ∼30% variability in the number of JJA ozone episodes (>70 ppbv) when averaged over the eastern United States. This seasonal predictability results from large-scale ocean-atmosphere interactions. Warm tropical Atlantic SSTs can trigger diabatic heating in the atmosphere and influence the extratropical climate through stationary wave propagation, leading to greater subsidence, less precipitation, and higher temperatures in the East, which increases surface ozone concentrations there. Cooler SSTs in the northeast Pacific are also associated with more summertime heatwaves and high ozone in the East. On average, models participating in the Atmospheric Model Intercomparison Project fail to capture the influence of this ocean-atmosphere interaction on temperatures in the eastern United States, implying that such models would have difficulty simulating the interannual variability of surface ozone in this region.
我们开发了一种统计模型,用于根据前一年春季的大规模气候模式预测美国东部6月至7月至8月(JJA)的每日最大8小时平均(MDA8)臭氧浓度。我们发现,东部地区JJA臭氧异常偏高与这些春季模式相关:热带大西洋海面温度(SST)偏高,东北太平洋海面温度偏低,以及夏威夷上空海平面气压(SLP)正异常,大西洋和北美上空SLP负异常。然后,我们开发了一个线性回归模型,利用前一年春季确定的SST和SLP模式来预测1980年至2013年的JJA MDA8臭氧浓度。该模型解释了美国东部地区JJA MDA8臭氧浓度约45%的变异性,以及JJA臭氧事件(>70 ppbv)数量约30%的变异性。这种季节性可预测性源于大规模的海洋-大气相互作用。热带大西洋温暖的SST会引发大气中的非绝热加热,并通过定常波传播影响温带气候,导致东部地区下沉增强、降水减少、温度升高,从而增加该地区的地表臭氧浓度。东北太平洋较冷的SST也与东部地区更多的夏季热浪和高臭氧有关。平均而言,参与大气模式相互比较计划的模型未能捕捉到这种海洋-大气相互作用对美国东部温度的影响,这意味着此类模型在模拟该地区地表臭氧的年际变异性方面存在困难。