Suppr超能文献

通过工程化癌症类器官的原位移植对结直肠癌进展进行遗传剖析。

Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids.

机构信息

Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center (UMC) Utrecht, 3584 CT Utrecht, The Netherlands.

Cancer Genomics Netherlands, UMC Utrecht, 3584 CG, Utrecht, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2357-E2364. doi: 10.1073/pnas.1701219114. Epub 2017 Mar 7.

Abstract

In the adenoma-carcinoma sequence, it is proposed that intestinal polyps evolve through a set of defined mutations toward metastatic colorectal cancer (CRC). Here, we dissect this adenoma-carcinoma sequence in vivo by using an orthotopic organoid transplantation model of human colon organoids engineered to harbor different CRC mutation combinations. We demonstrate that sequential accumulation of oncogenic mutations in Wnt, EGFR, P53, and TGF-β signaling pathways facilitates efficient tumor growth, migration, and metastatic colonization. We show that reconstitution of specific niche signals can restore metastatic growth potential of tumor cells lacking one of the oncogenic mutations. Our findings imply that the ability to metastasize-i.e., to colonize distant sites-is the direct consequence of the loss of dependency on specific niche signals.

摘要

在腺瘤-癌序列中,有人提出肠道息肉通过一系列明确的突变向转移性结直肠癌(CRC)进化。在这里,我们通过使用一种原位类器官移植模型来在体内剖析这个腺瘤-癌序列,该模型中,人类结肠类器官被设计成携带不同的 CRC 突变组合。我们证明,Wnt、EGFR、P53 和 TGF-β 信号通路中的致癌突变的顺序积累促进了肿瘤的有效生长、迁移和转移性定植。我们表明,特定龛位信号的重建可以恢复缺乏一种致癌突变的肿瘤细胞的转移生长潜力。我们的研究结果表明,转移能力——即定植于远处部位的能力——是对特定龛位信号的依赖性丧失的直接后果。

相似文献

1
Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2357-E2364. doi: 10.1073/pnas.1701219114. Epub 2017 Mar 7.
2
A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis.
Cell Stem Cell. 2016 Jun 2;18(6):827-838. doi: 10.1016/j.stem.2016.04.003. Epub 2016 May 19.
4
A surgical orthotopic organoid transplantation approach in mice to visualize and study colorectal cancer progression.
Nat Protoc. 2018 Feb;13(2):235-247. doi: 10.1038/nprot.2017.137. Epub 2018 Jan 4.
6
TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status.
Mol Oncol. 2020 Dec;14(12):3007-3029. doi: 10.1002/1878-0261.12821. Epub 2020 Oct 28.
7
A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential.
Gastroenterology. 2009 Jul;137(1):165-75. doi: 10.1053/j.gastro.2009.03.041. Epub 2009 Mar 26.
8
CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15635-15644. doi: 10.1073/pnas.1904714116. Epub 2019 Jul 12.
9
Nodal-induced L1CAM/CXCR4 subpopulation sustains tumor growth and metastasis in colorectal cancer derived organoids.
Theranostics. 2021 Mar 31;11(12):5686-5699. doi: 10.7150/thno.54027. eCollection 2021.

引用本文的文献

1
Predicting colorectal cancer risk in FAP patients using patient-specific organoids.
Cancer Gene Ther. 2025 Jul 22. doi: 10.1038/s41417-025-00923-7.
2
The Role of Organoids in Advancing Colorectal Cancer Research: Insights and Future Directions.
Cancers (Basel). 2025 Jun 25;17(13):2129. doi: 10.3390/cancers17132129.
3
Organoids technology in cancer research: from basic applications to advanced models.
Front Cell Dev Biol. 2025 May 22;13:1569337. doi: 10.3389/fcell.2025.1569337. eCollection 2025.
4
An engineered tumor organoid model reveals cellular identity and signaling trajectories underlying SFPQ-TFE3 driven translocation RCC.
iScience. 2025 Mar 1;28(4):112122. doi: 10.1016/j.isci.2025.112122. eCollection 2025 Apr 18.
6
A surgical orthotopic xenograft approach with immune response for colorectal cancer research.
Animal Model Exp Med. 2025 Mar;8(3):558-567. doi: 10.1002/ame2.12560. Epub 2025 Jan 24.
7
Exploring the Role of the TGF-β Signaling Pathway in Colorectal Precancerous Polyps Biochemical Genetics.
Biochem Genet. 2025 Apr;63(2):1116-1148. doi: 10.1007/s10528-024-10988-y. Epub 2024 Dec 5.
10
RNA binding protein ZCCHC24 promotes tumorigenicity in triple-negative breast cancer.
EMBO Rep. 2024 Dec;25(12):5352-5382. doi: 10.1038/s44319-024-00282-8. Epub 2024 Oct 17.

本文引用的文献

1
A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis.
Cell Stem Cell. 2016 Jun 2;18(6):827-838. doi: 10.1016/j.stem.2016.04.003. Epub 2016 May 19.
2
Sequential cancer mutations in cultured human intestinal stem cells.
Nature. 2015 May 7;521(7550):43-7. doi: 10.1038/nature14415. Epub 2015 Apr 29.
3
Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.
Nat Med. 2015 Mar;21(3):256-62. doi: 10.1038/nm.3802. Epub 2015 Feb 23.
4
A Big Bang model of human colorectal tumor growth.
Nat Genet. 2015 Mar;47(3):209-16. doi: 10.1038/ng.3214. Epub 2015 Feb 9.
5
Endothelial Notch activity promotes angiogenesis and osteogenesis in bone.
Nature. 2014 Mar 20;507(7492):376-380. doi: 10.1038/nature13146. Epub 2014 Mar 12.
6
Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging.
Nature. 2014 Mar 20;507(7492):362-365. doi: 10.1038/nature12972. Epub 2014 Feb 16.
7
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.
Cell Stem Cell. 2013 Dec 5;13(6):653-8. doi: 10.1016/j.stem.2013.11.002.
8
Surgical implantation of an abdominal imaging window for intravital microscopy.
Nat Protoc. 2013 Mar;8(3):583-94. doi: 10.1038/nprot.2013.026. Epub 2013 Feb 21.
9
Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis.
Sci Transl Med. 2012 Oct 31;4(158):158ra145. doi: 10.1126/scitranslmed.3004394.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验