Suppr超能文献

实验和密度泛函理论研究揭示了外部配位层对镍取代红素氧还蛋白(一种模拟氢化酶)振动光谱的影响。

Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme.

作者信息

Slater Jeffrey W, Marguet Sean C, Cirino Sabrina L, Maugeri Pearson T, Shafaat Hannah S

机构信息

The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States.

出版信息

Inorg Chem. 2017 Apr 3;56(7):3926-3938. doi: 10.1021/acs.inorgchem.6b02934. Epub 2017 Mar 21.

Abstract

Nickel-substituted rubredoxin (NiRd) is a functional enzyme mimic of hydrogenase, highly active for electrocatalytic and solution-phase hydrogen generation. Spectroscopic methods can provide valuable insight into the catalytic mechanism, provided the appropriate technique is used. In this study, we have employed multiwavelength resonance Raman spectroscopy coupled with DFT calculations on an extended active-site model of NiRd to probe the electronic and geometric structures of the resting state of this system. Excellent agreement between experiment and theory is observed, allowing normal mode assignments to be made on the basis of frequency and intensity analyses. Both metal-ligand and ligand-centered vibrational modes are enhanced in the resonance Raman spectra. The latter provide information about the hydrogen bonding network and structural distortions due to perturbations in the secondary coordination sphere. To reproduce the resonance enhancement patterns seen for high-frequency vibrational modes, the secondary coordination sphere must be included in the computational model. The structure and reduction potential of the NiRd state have also been investigated both experimentally and computationally. This work begins to establish a foundation for computational resonance Raman spectroscopy to serve in a predictive fashion for investigating catalytic intermediates of NiRd.

摘要

镍取代的红素氧还蛋白(NiRd)是氢化酶的一种功能性酶模拟物,对电催化和溶液相产氢具有高活性。如果使用合适的技术,光谱方法可以为催化机制提供有价值的见解。在本研究中,我们采用多波长共振拉曼光谱结合对NiRd扩展活性位点模型的密度泛函理论计算,来探测该体系基态的电子和几何结构。实验与理论之间观察到了极好的一致性,这使得能够基于频率和强度分析进行简正模式归属。金属 - 配体振动模式和以配体为中心的振动模式在共振拉曼光谱中均得到增强。后者提供了关于氢键网络以及由于二级配位层扰动引起的结构畸变的信息。为了重现高频振动模式的共振增强模式,计算模型中必须包含二级配位层。还通过实验和计算研究了NiRd状态的结构和还原电位。这项工作开始为计算共振拉曼光谱以预测方式研究NiRd的催化中间体奠定基础。

相似文献

2
Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
J Am Chem Soc. 2018 Aug 15;140(32):10250-10262. doi: 10.1021/jacs.8b05194. Epub 2018 Aug 1.
3
Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase.
J Phys Chem Lett. 2015 Sep 17;6(18):3731-6. doi: 10.1021/acs.jpclett.5b01750. Epub 2015 Sep 8.
5
Light-Driven Hydrogen Evolution by Nickel-Substituted Rubredoxin.
ChemSusChem. 2017 Nov 23;10(22):4424-4429. doi: 10.1002/cssc.201701627. Epub 2017 Oct 25.
6
Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform.
Biochemistry. 2023 Sep 5;62(17):2622-2631. doi: 10.1021/acs.biochem.3c00249. Epub 2023 Aug 14.
7
Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin.
J Inorg Biochem. 1991 Nov;44(2):127-39. doi: 10.1016/0162-0134(91)84025-5.
10
An NMR structural study of nickel-substituted rubredoxin.
J Biol Inorg Chem. 2010 Mar;15(3):409-20. doi: 10.1007/s00775-009-0613-6. Epub 2009 Dec 8.

引用本文的文献

2
The underappreciated influence of ancillary halide on metal-ligand proton tautomerism.
Chem Sci. 2022 Jun 20;13(26):7837-7845. doi: 10.1039/d2sc00279e. eCollection 2022 Jul 6.
4
Light-driven catalysis with engineered enzymes and biomimetic systems.
Biotechnol Appl Biochem. 2020 Jul;67(4):463-483. doi: 10.1002/bab.1976. Epub 2020 Jul 5.
6
The oxygen reactivity of an artificial hydrogenase designed in a reengineered copper storage protein.
Dalton Trans. 2020 Feb 14;49(6):1928-1934. doi: 10.1039/c9dt04913d. Epub 2020 Jan 23.
7
Redesign of a Copper Storage Protein into an Artificial Hydrogenase.
ACS Catal. 2019 Jul 5;9(7):5847-5859. doi: 10.1021/acscatal.9b00360. Epub 2019 May 16.
8
Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
Acc Chem Res. 2019 Apr 16;52(4):935-944. doi: 10.1021/acs.accounts.9b00011. Epub 2019 Mar 26.
9
Driving Protein Conformational Changes with Light: Photoinduced Structural Rearrangement in a Heterobimetallic Oxidase.
J Am Chem Soc. 2018 Jan 31;140(4):1471-1480. doi: 10.1021/jacs.7b11966. Epub 2018 Jan 22.

本文引用的文献

1
Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution.
Chem Sci. 2016 Nov 1;7(11):6746-6752. doi: 10.1039/c6sc01098a. Epub 2016 Jul 11.
2
Synchrotron-based Nickel Mössbauer Spectroscopy.
Inorg Chem. 2016 Jul 18;55(14):6866-72. doi: 10.1021/acs.inorgchem.5b03004. Epub 2016 Jul 7.
3
Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.
Chem Rev. 2016 Aug 10;116(15):8693-749. doi: 10.1021/acs.chemrev.6b00180. Epub 2016 Jun 29.
4
Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase.
J Phys Chem Lett. 2015 Sep 17;6(18):3731-6. doi: 10.1021/acs.jpclett.5b01750. Epub 2015 Sep 8.
5
All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms.
J Chem Theory Comput. 2008 Jun;4(6):908-19. doi: 10.1021/ct800047t.
6
Mechanism of hydrogen activation by [NiFe] hydrogenases.
Nat Chem Biol. 2016 Jan;12(1):46-50. doi: 10.1038/nchembio.1976. Epub 2015 Nov 30.
7
All-Electron Scalar Relativistic Basis Sets for the Lanthanides.
J Chem Theory Comput. 2009 Sep 8;5(9):2229-38. doi: 10.1021/ct900090f. Epub 2009 Aug 12.
8
Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method.
J Chem Theory Comput. 2010 Aug 10;6(8):2325-38. doi: 10.1021/ct100199k. Epub 2010 Jul 2.
9
Accurate Reaction Energies in Proteins Obtained by Combining QM/MM and Large QM Calculations.
J Chem Theory Comput. 2013 Jan 8;9(1):640-9. doi: 10.1021/ct3005003. Epub 2012 Nov 8.
10
The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.
J Am Chem Soc. 2015 Oct 28;137(42):13556-65. doi: 10.1021/jacs.5b07680. Epub 2015 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验