Suppr超能文献

阻力动脉和微动脉中的平滑肌离子通道与血管张力调节

Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles.

作者信息

Tykocki Nathan R, Boerman Erika M, Jackson William F

机构信息

Department of Pharmacology, University of Vermont, Burlington, Vermont, USA.

Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA.

出版信息

Compr Physiol. 2017 Mar 16;7(2):485-581. doi: 10.1002/cphy.c160011.

Abstract

Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.

摘要

阻力动脉和小动脉的血管张力决定外周血管阻力,有助于调节血压以及流向身体组织和器官并在其中流动的血流量。这些血管中血管平滑肌细胞(SMC)质膜和内质网中的离子通道对细胞内Ca2+浓度的调节起着重要作用,而细胞内Ca2+浓度是SMC收缩活动和血管张力的主要决定因素。离子通道是决定血管张力的激活Ca2+的主要来源,并对设定和调节膜电位有重要作用,而膜电位又反过来调节电压门控Ca2+通道(VGCC)的开放概率,VGCC是阻力动脉和小动脉SMC中Ca2+的主要来源。离子通道功能也受血管收缩剂和血管舒张剂的调节,对血管张力调节的各个方面都有影响。本综述将聚焦于VGCC、电压门控K+(KV)通道、大电导Ca2+激活K+(BKCa)通道、强内向整流K+(KIR)通道、ATP敏感性K+(KATP)通道、兰尼碱受体(RyRs)、肌醇1,4,5-三磷酸受体(IP3Rs)以及多种瞬时受体电位(TRP)通道的生理学,这些通道在阻力动脉和小动脉压力诱导的肌源性张力形成中发挥作用,血管收缩剂和血管舒张剂对这些离子通道功能的调节,它们在组织血流功能调节中的作用以及它们在高血压、肥胖症和糖尿病等疾病中的功能障碍。© 2017美国生理学会。综合生理学7:485 - 581, 2017。

相似文献

1
Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles.
Compr Physiol. 2017 Mar 16;7(2):485-581. doi: 10.1002/cphy.c160011.
2
Ion channels and the regulation of myogenic tone in peripheral arterioles.
Curr Top Membr. 2020;85:19-58. doi: 10.1016/bs.ctm.2020.01.002. Epub 2020 Feb 25.
3
Calcium-Dependent Ion Channels and the Regulation of Arteriolar Myogenic Tone.
Front Physiol. 2021 Nov 8;12:770450. doi: 10.3389/fphys.2021.770450. eCollection 2021.
4
Voltage-gated Ca channel activity modulates smooth muscle cell calcium waves in hamster cremaster arterioles.
Am J Physiol Heart Circ Physiol. 2018 Oct 1;315(4):H871-H878. doi: 10.1152/ajpheart.00292.2018. Epub 2018 Jun 29.
5
Ion channels and vascular tone.
Hypertension. 2000 Jan;35(1 Pt 2):173-8. doi: 10.1161/01.hyp.35.1.173.
6
Physiological roles of K+ channels in vascular smooth muscle cells.
J Smooth Muscle Res. 2008 Apr;44(2):65-81. doi: 10.1540/jsmr.44.65.
7
Heterogeneity in function of small artery smooth muscle BKCa: involvement of the beta1-subunit.
J Physiol. 2009 Jun 15;587(Pt 12):3025-44. doi: 10.1113/jphysiol.2009.169920. Epub 2009 Apr 9.
8
Inhibition of vascular smooth muscle inward-rectifier K channels restores myogenic tone in mouse urinary bladder arterioles.
Am J Physiol Renal Physiol. 2017 May 1;312(5):F836-F847. doi: 10.1152/ajprenal.00682.2016. Epub 2017 Feb 1.
9
Physiological roles and properties of potassium channels in arterial smooth muscle.
Am J Physiol. 1995 Apr;268(4 Pt 1):C799-822. doi: 10.1152/ajpcell.1995.268.4.C799.
10
Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
Acta Physiol Scand. 1998 Dec;164(4):577-87. doi: 10.1046/j.1365-201X.1998.00462.x.

引用本文的文献

1
Blood vessels bioengineered from induced pluripotent stem cell derived mesenchymal stem cells and porous silk fibroin coated functional scaffolds.
J Tissue Eng. 2025 Aug 5;16:20417314251355723. doi: 10.1177/20417314251355723. eCollection 2025 Jan-Dec.
4
The machinery of healthy vasoconstriction: an overview.
Pflugers Arch. 2025 Jul 11. doi: 10.1007/s00424-025-03103-6.
5
Insulin resistance, Ca signaling alterations and vascular dysfunction in prediabetes and metabolic syndrome.
Front Physiol. 2025 Jun 10;16:1535153. doi: 10.3389/fphys.2025.1535153. eCollection 2025.
7
The machinery of healthy vasodilatation: an overview.
Pflugers Arch. 2025 Jun 6. doi: 10.1007/s00424-025-03096-2.
8
High NE dose trajectory is associated with new onset of acute kidney injury patients: A group-based trajectory modeling analysis.
PLoS One. 2025 May 13;20(5):e0323431. doi: 10.1371/journal.pone.0323431. eCollection 2025.
9
The molecular determinants regulating redox signaling in diabetic endothelial cells.
Front Pharmacol. 2025 Apr 1;16:1563047. doi: 10.3389/fphar.2025.1563047. eCollection 2025.
10
Dual role of calcium-activated potassium channels of high conductance: facilitator or limiter of NO-induced arterial relaxation?
Front Physiol. 2025 Mar 27;16:1563014. doi: 10.3389/fphys.2025.1563014. eCollection 2025.

本文引用的文献

1
Comparison of Voltage Gated K Currents in Arterial Myocytes with Heterologously Expressed K Subunits.
Cell Biochem Biophys. 2016 Dec;74(4):499-511. doi: 10.1007/s12013-016-0763-4. Epub 2016 Sep 16.
2
Critical contribution of KV1 channels to the regulation of coronary blood flow.
Basic Res Cardiol. 2016 Sep;111(5):56. doi: 10.1007/s00395-016-0575-0. Epub 2016 Aug 5.
3
Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.
Cell Biochem Biophys. 2016 Jun;74(2):263-76. doi: 10.1007/s12013-015-0715-4.
4
An Updated Review of Methods and Advancements in Microvascular Blood Flow Imaging.
Microcirculation. 2016 Jul;23(5):345-63. doi: 10.1111/micc.12284.
5
Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.
Clin Sci (Lond). 2016 May;130(9):643-50. doi: 10.1042/CS20150533.
6
ATP sensitive K(+) channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart.
J Mol Cell Cardiol. 2016 Mar;92:116-21. doi: 10.1016/j.yjmcc.2016.02.005. Epub 2016 Feb 20.
7
Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.
J Physiol. 2016 Jun 15;594(12):3271-85. doi: 10.1113/JP271652. Epub 2016 Mar 4.
8
Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
J Huazhong Univ Sci Technolog Med Sci. 2016 Feb;36(1):8-13. doi: 10.1007/s11596-016-1534-6. Epub 2016 Feb 3.
9
KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine.
Am J Physiol Heart Circ Physiol. 2016 Mar 15;310(6):H693-704. doi: 10.1152/ajpheart.00688.2015. Epub 2016 Jan 29.
10
Neurovascular coupling in humans: Physiology, methodological advances and clinical implications.
J Cereb Blood Flow Metab. 2016 Apr;36(4):647-64. doi: 10.1177/0271678X15617954. Epub 2015 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验