Suppr超能文献

绵羊模型中组织工程气管移植物狭窄的内镜处理

Endoscopic management of tissue-engineered tracheal graft stenosis in an ovine model.

作者信息

Pepper Victoria K, Onwuka Ekene A, Best Cameron A, King Nakesha, Heuer Eric, Johnson Jed, Breuer Christopher K, Grischkan Jonathan M, Chiang Tendy

机构信息

Tissue Engineering Program, the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, U.S.A.

Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, U.S.A.

出版信息

Laryngoscope. 2017 Oct;127(10):2219-2224. doi: 10.1002/lary.26504. Epub 2017 Mar 27.

Abstract

OBJECTIVE

To evaluate the safety and efficacy of bronchoscopic interventions in the management of tissue-engineered tracheal graft (TETG) stenosis.

STUDY DESIGN

Animal research study.

METHODS

TETGs were constructed with seeded autologous bone marrow-derived mononuclear cells on a bioartificial graft. Eight sheep underwent tracheal resection and orthotopic implantation of this construct. Animals were monitored by bronchoscopy and fluoroscopy at 3 weeks, 6 weeks, 3 months, and 4 months. Bronchoscopic interventions, including dilation and stenting, were performed to manage graft stenosis. Postdilation measurements were obtained endoscopically and fluoroscopically.

RESULTS

Seven dilations were performed in six animals. At the point of maximal stenosis, the lumen measured 44.6 ± 8.4 mm predilation and 50.7 ± 14.1 postdilation by bronchoscopy (P = 0.3517). By fluoroscopic imaging, the airway was 55.9 ± 12.9 mm predilation and 65.9 ± 22.4 mm postdilation (P = 0.1303). Stents were placed 17 times in six animals. Pre- and poststenting lumen sizes were 62.8 ± 38.8 mm and 80.1 ± 54.5 mm by bronchoscopy (P = 0.6169) and 77.1 ± 38.9 mm and 104 ± 60.7 mm by fluoroscopy (P = 0.0825). Mortality after intervention was 67% with dilation and 0% with stenting (P = 0.0004). The average days between bronchoscopy were 8 ± 2 for the dilation group and 26 ± 17 in the stenting group (P = 0.05). One hundred percent of dilations and 29% of stent placements required urgent follow-up bronchoscopy (P = 0.05).

CONCLUSION

Dilation has limited efficacy for managing TETG stenosis, whereas stenting has a more lasting clinical effect.

LEVEL OF EVIDENCE

NA. Laryngoscope, 127:2219-2224, 2017.

摘要

目的

评估支气管镜介入治疗组织工程气管移植物(TETG)狭窄的安全性和有效性。

研究设计

动物研究。

方法

将自体骨髓来源的单个核细胞接种于生物人工移植物上构建TETG。8只绵羊接受气管切除并原位植入该构建物。在3周、6周、3个月和4个月时通过支气管镜和荧光透视对动物进行监测。采用支气管镜介入治疗,包括扩张和支架置入,以处理移植物狭窄。扩张后通过内镜和荧光透视测量。

结果

6只动物共进行了7次扩张。在狭窄最严重时,支气管镜检查显示扩张前管腔直径为44.6±8.4mm,扩张后为50.7±14.1mm(P = 0.3517)。荧光透视成像显示,扩张前气道直径为55.9±12.9mm,扩张后为65.9±22.4mm(P = 0.1303)。6只动物共置入支架17次。支气管镜检查显示,置入支架前后管腔直径分别为62.8±38.8mm和80.1±54.5mm(P = 0.6169);荧光透视显示分别为77.1±38.9mm和104±60.7mm(P = 0.0825)。扩张后死亡率为67%,支架置入后死亡率为0%(P = 0.0004)。扩张组支气管镜检查的平均间隔天数为8±2天,支架置入组为26±17天(P = 0.05)。100%的扩张和29%的支架置入需要紧急随访支气管镜检查(P = 0.05)。

结论

扩张治疗TETG狭窄的疗效有限,而支架置入具有更持久的临床效果。

证据水平

无。《喉镜》,2017年,第127卷,第2219 - 2224页

相似文献

1
Endoscopic management of tissue-engineered tracheal graft stenosis in an ovine model.
Laryngoscope. 2017 Oct;127(10):2219-2224. doi: 10.1002/lary.26504. Epub 2017 Mar 27.
2
Quantification of tissue-engineered trachea performance with computational fluid dynamics.
Laryngoscope. 2018 Aug;128(8):E272-E279. doi: 10.1002/lary.27233. Epub 2018 May 14.
3
Metallic stent insertion and removal for post-tracheotomy and post-intubation tracheal stenosis.
Radiol Med. 2019 Mar;124(3):191-198. doi: 10.1007/s11547-018-0953-9. Epub 2018 Oct 24.
4
Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement.
Otolaryngol Head Neck Surg. 2019 Sep;161(3):458-467. doi: 10.1177/0194599819844754. Epub 2019 Apr 30.
9
Pediatric tracheal homograft reconstruction: a novel approach to complex tracheal stenoses in children.
J Thorac Cardiovasc Surg. 1996 Dec;112(6):1549-58; discussion 1559-60. doi: 10.1016/S0022-5223(96)70014-4.

引用本文的文献

1
Applications of Electrospinning for Tissue Engineering in Otolaryngology.
Ann Otol Rhinol Laryngol. 2021 Apr;130(4):395-404. doi: 10.1177/0003489420959692. Epub 2020 Sep 25.
2
Tissue engineering applications in otolaryngology-The state of translation.
Laryngoscope Investig Otolaryngol. 2020 Jun 19;5(4):630-648. doi: 10.1002/lio2.416. eCollection 2020 Aug.
3
Electrospun scaffolds limit the regenerative potential of the airway epithelium.
Laryngoscope Investig Otolaryngol. 2019 Jul 16;4(4):446-454. doi: 10.1002/lio2.289. eCollection 2019 Aug.
4
Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement.
Otolaryngol Head Neck Surg. 2019 Sep;161(3):458-467. doi: 10.1177/0194599819844754. Epub 2019 Apr 30.
5
Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds.
Ann Otol Rhinol Laryngol. 2019 May;128(5):391-400. doi: 10.1177/0003489419826134. Epub 2019 Jan 30.
6
Clinical validation and reproducibility of endoscopic airway measurement in pediatric aerodigestive evaluation.
Int J Pediatr Otorhinolaryngol. 2019 Jan;116:65-69. doi: 10.1016/j.ijporl.2018.10.004. Epub 2018 Oct 11.
7
Quantification of tissue-engineered trachea performance with computational fluid dynamics.
Laryngoscope. 2018 Aug;128(8):E272-E279. doi: 10.1002/lary.27233. Epub 2018 May 14.
8
Autologous Cell Seeding in Tracheal Tissue Engineering.
Curr Stem Cell Rep. 2017;3(4):279-289. doi: 10.1007/s40778-017-0108-2. Epub 2017 Oct 26.

本文引用的文献

1
Objective characterization of airway dimensions using image processing.
Int J Pediatr Otorhinolaryngol. 2016 Dec;91:108-112. doi: 10.1016/j.ijporl.2016.10.004. Epub 2016 Oct 6.
2
Clinical Translation of Tissue Engineered Trachea Grafts.
Ann Otol Rhinol Laryngol. 2016 Nov;125(11):873-885. doi: 10.1177/0003489416656646. Epub 2016 Jul 12.
3
Bronchoscopic Treatment in the Management of Benign Tracheal Stenosis: Choices for Simple and Complex Tracheal Stenosis.
Ann Thorac Surg. 2016 Apr;101(4):1310-7. doi: 10.1016/j.athoracsur.2015.10.005. Epub 2015 Dec 17.
4
Effect of cell seeding on neotissue formation in a tissue engineered trachea.
J Pediatr Surg. 2016 Jan;51(1):49-55. doi: 10.1016/j.jpedsurg.2015.10.008. Epub 2015 Oct 22.
5
Paolo Macchiarini is not guilty of scientific misconduct.
Lancet. 2015 Sep 5;386(9997):932. doi: 10.1016/S0140-6736(15)00118-X.
6
Tissue-Engineered Tracheal Replacement in a Child: A 4-Year Follow-Up Study.
Am J Transplant. 2015 Oct;15(10):2750-7. doi: 10.1111/ajt.13318. Epub 2015 Jun 2.
7
Comparison of a closed system to a standard open technique for preparing tissue-engineered vascular grafts.
Tissue Eng Part C Methods. 2015 Jan;21(1):88-93. doi: 10.1089/ten.TEC.2014.0160.
8
Airway transplantation.
Thorac Surg Clin. 2014 Feb;24(1):97-106. doi: 10.1016/j.thorsurg.2013.09.005.
9
Endoscopic treatment of tracheal stenosis.
Thorac Surg Clin. 2014 Feb;24(1):27-40. doi: 10.1016/j.thorsurg.2013.10.003.
10
A systematic review and meta-analysis of endoscopic balloon dilation of pediatric subglottic stenosis.
Otolaryngol Head Neck Surg. 2014 Feb;150(2):174-9. doi: 10.1177/0194599813510867. Epub 2013 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验