Suppr超能文献

可自组装成坚固纳米纤维作为免疫功能支架的带电肽的合理设计。

Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.

作者信息

Zhang Hangyu, Park Jaehyung, Jiang Yonghou, Woodrow Kim A

机构信息

Department of Bioengineering, University of Washington, Foege N410D, 3720 15th Ave NE, Seattle, WA 98195-5061, USA.

Department of Bioengineering, University of Washington, Foege N410D, 3720 15th Ave NE, Seattle, WA 98195-5061, USA.

出版信息

Acta Biomater. 2017 Jun;55:183-193. doi: 10.1016/j.actbio.2017.03.041. Epub 2017 Mar 30.

Abstract

UNLABELLED

Self-assembling peptides programed by sequence design to form predefined nanostructures are useful for a variety of biomedical applications. However, assemblies of classic ionic self-complementary peptides are unstable in neutral pH, while charged peptide hydrogels have low mechanical strength. Here, we report on the rational design of a self-assembling peptide system with optimized charge distribution and density for bioscaffold development. Our designer peptides employs a sequence pattern that undergoes salt triggered self-assembly into β-sheet rich cationic nanofibers in the full pH range (pH 0-14). Our peptides form nanofibrils in physiological condition at a minimum concentration that is significantly lower than has been reported for self-assembly of comparable peptides. The robust fiber-forming ability of our peptides results in the rapid formation of hydrogels in physiological conditions with strong mechanical strength. Moreover, fiber structure is maintained even upon dense conjugation with a model bioactive cargo OVA peptide. Nanofibers carrying OVA significantly enhanced CD8 T cell activation in vitro. Subcutaneous immunization of our peptide fiber vaccine also elicited robust CD8 T cell activation and proliferation in vivo. Our self-assembling peptides are expected to provide a versatile platform to construct diverse biomaterials.

STATEMENT OF SIGNIFICANCE

This work is an attempt of rational design of materials from molecular level for targeted properties and an exploration in molecular self-assembly. Current widely studied self-assembling peptides do not have stable nanofiber structures and form weak hydrogels under physiological conditions. To address this issue, we develop charged self-assembling peptides with a novel sequence pattern for strong fiber-forming ability under physiological conditions. Our designer peptides can undergo salt-triggered self-assembly into nanofibers that are ultrastable in extreme pH (0-14) and dilute solutions, and into hydrogels with strong mechanical strength. Upon conjugation with a model bioactive cargo, our self-assembled peptides exhibit great potential as bioscaffolds for multiple applications.

摘要

未标记

通过序列设计编程以形成预定义纳米结构的自组装肽可用于多种生物医学应用。然而,经典离子自互补肽的组装在中性pH下不稳定,而带电肽水凝胶的机械强度较低。在此,我们报告了一种用于生物支架开发的具有优化电荷分布和密度的自组装肽系统的合理设计。我们设计的肽采用一种序列模式,该模式在整个pH范围(pH 0 - 14)内经历盐触发的自组装,形成富含β-折叠的阳离子纳米纤维。我们的肽在生理条件下以显著低于已报道的可比肽自组装所需的最低浓度形成纳米纤维。我们的肽强大的纤维形成能力导致在生理条件下快速形成具有强机械强度的水凝胶。此外,即使与模型生物活性货物OVA肽紧密缀合,纤维结构也能保持。携带OVA的纳米纤维在体外显著增强了CD8 T细胞的活化。我们的肽纤维疫苗的皮下免疫在体内也引发了强大的CD8 T细胞活化和增殖。我们的自组装肽有望提供一个通用平台来构建多种生物材料。

意义声明

这项工作是从分子水平对具有靶向性质的材料进行合理设计的尝试,也是对分子自组装的探索。目前广泛研究的自组装肽没有稳定的纳米纤维结构,并且在生理条件下形成的水凝胶较弱。为了解决这个问题,我们开发了具有新型序列模式的带电自组装肽,以便在生理条件下具有强大的纤维形成能力。我们设计的肽可以经历盐触发的自组装,形成在极端pH(0 - 14)和稀溶液中超稳定的纳米纤维,并形成具有强机械强度的水凝胶。与模型生物活性货物缀合后,我们的自组装肽作为用于多种应用的生物支架具有巨大潜力。

相似文献

1
Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
Acta Biomater. 2017 Jun;55:183-193. doi: 10.1016/j.actbio.2017.03.041. Epub 2017 Mar 30.
2
Efficacy of self-assembled hydrogels composed of positively or negatively charged peptides as scaffolds for cell culture.
J Biomater Appl. 2012 Feb;26(6):651-65. doi: 10.1177/0885328210379927. Epub 2010 Dec 1.
4
Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
Acta Biomater. 2018 Jan 15;66:258-271. doi: 10.1016/j.actbio.2017.11.026. Epub 2017 Nov 8.
5
Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.
Acta Biomater. 2017 Mar 15;51:268-278. doi: 10.1016/j.actbio.2017.01.038. Epub 2017 Jan 16.
7
Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
J Am Chem Soc. 2019 Mar 27;141(12):4886-4899. doi: 10.1021/jacs.8b13363. Epub 2019 Mar 12.
8
Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells.
J Biomed Mater Res A. 2014 May;102(5):1286-93. doi: 10.1002/jbm.a.34804. Epub 2013 Jun 4.
9
Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.
ACS Appl Mater Interfaces. 2016 Jan 27;8(3):2348-59. doi: 10.1021/acsami.5b11473. Epub 2016 Jan 13.
10
Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro.
Acta Biomater. 2013 Jun;9(6):6798-805. doi: 10.1016/j.actbio.2013.01.027. Epub 2013 Feb 4.

引用本文的文献

1
Influence of Electrostatic Interactions on the Self-Assembly of Charged Peptides.
Gels. 2025 Jan 20;11(1):80. doi: 10.3390/gels11010080.
3
Peptide-Based Hydrogels: Template Materials for Tissue Engineering.
J Funct Biomater. 2023 Apr 19;14(4):233. doi: 10.3390/jfb14040233.
4
Modular design and self-assembly of multidomain peptides towards cytocompatible supramolecular cell penetrating nanofibers.
RSC Adv. 2020 Aug 10;10(49):29469-29474. doi: 10.1039/d0ra04748a. eCollection 2020 Aug 5.
6
Antitumor Peptide-Based Vaccine in the Limelight.
Vaccines (Basel). 2022 Jan 3;10(1):70. doi: 10.3390/vaccines10010070.
7
Peptide-Based Drug Delivery Systems.
Medicina (Kaunas). 2021 Nov 5;57(11):1209. doi: 10.3390/medicina57111209.
9
Peptide-based supramolecular vaccine systems.
Acta Biomater. 2021 Oct 1;133:153-167. doi: 10.1016/j.actbio.2021.05.003. Epub 2021 May 16.
10
Hydrodynamic Mixing Tunes the Stiffness of Proteoglycan-Mimicking Physical Hydrogels.
Adv Healthc Mater. 2021 Jun;10(11):e2001998. doi: 10.1002/adhm.202001998. Epub 2021 May 4.

本文引用的文献

2
Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
Chem Rev. 2015 Dec 23;115(24):13165-307. doi: 10.1021/acs.chemrev.5b00299. Epub 2015 Dec 8.
3
Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.
Biomacromolecules. 2015 Dec 14;16(12):3792-801. doi: 10.1021/acs.biomac.5b01092. Epub 2015 Nov 23.
4
Biomedical Applications of Self-Assembling Peptides.
Bioconjug Chem. 2016 Jan 20;27(1):3-18. doi: 10.1021/acs.bioconjchem.5b00487. Epub 2015 Dec 11.
5
Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide.
Angew Chem Int Ed Engl. 2014 Aug 4;53(32):8367-71. doi: 10.1002/anie.201403780. Epub 2014 Jun 24.
6
Antigenic peptide nanofibers elicit adjuvant-free CD8⁺ T cell responses.
Vaccine. 2014 Feb 26;32(10):1174-80. doi: 10.1016/j.vaccine.2013.11.047. Epub 2013 Dec 2.
7
In vitro study of α-synuclein protofibrils by cryo-EM suggests a Cu(2+)-dependent aggregation pathway.
Biophys J. 2013 Jun 18;104(12):2706-13. doi: 10.1016/j.bpj.2013.04.050.
8
Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model.
PLoS One. 2012;7(8):e41800. doi: 10.1371/journal.pone.0041800. Epub 2012 Aug 7.
9
Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response.
Biomaterials. 2012 Oct;33(28):6823-32. doi: 10.1016/j.biomaterials.2012.06.003. Epub 2012 Jun 28.
10
Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope.
Biomaterials. 2012 Sep;33(27):6476-84. doi: 10.1016/j.biomaterials.2012.05.041. Epub 2012 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验