Suppr超能文献

利用 CRISPR/Cas9 技术建立脑部疾病模型。

Use of CRISPR/Cas9 to model brain diseases.

机构信息

Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510631, China.

Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.

出版信息

Prog Neuropsychopharmacol Biol Psychiatry. 2018 Feb 2;81:488-492. doi: 10.1016/j.pnpbp.2017.04.003. Epub 2017 Apr 6.

Abstract

Aging-related brain diseases consist of a number of important neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, all of which have become more prevalent as the life expectancy of humans is prolonged. Age-dependent brain disorders are associated with both environmental insults and genetic mutations. For those brain disorders that are inherited, gene editing is an important tool for establishing animal models to investigate the pathogenesis of disease and identify effective treatments. Here we focus on the tools for gene editing, especially CRISPR/Cas9, and discuss their application for generating animal models that can recapitulate the brain pathology seen in human diseases. We also highlight the advantages and disadvantages of establishing genetically modified animal models. Finally, we discuss recent findings to resolve technical issues related to the use of CRISPR/Cas9 for generating animal models of brain diseases.

摘要

与年龄相关的脑部疾病包括多种重要的神经退行性疾病,如阿尔茨海默病、帕金森病和亨廷顿病等,随着人类预期寿命的延长,这些疾病的发病率都有所上升。与年龄相关的脑部疾病既与环境损伤有关,也与基因突变有关。对于那些遗传性脑部疾病,基因编辑是建立动物模型以研究疾病发病机制和确定有效治疗方法的重要工具。在这里,我们重点介绍基因编辑工具,特别是 CRISPR/Cas9,并讨论它们在生成可重现人类疾病脑部病理学的动物模型中的应用。我们还强调了建立基因修饰动物模型的优缺点。最后,我们讨论了最近的研究结果,以解决与使用 CRISPR/Cas9 生成脑部疾病动物模型相关的技术问题。

相似文献

1
Use of CRISPR/Cas9 to model brain diseases.
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Feb 2;81:488-492. doi: 10.1016/j.pnpbp.2017.04.003. Epub 2017 Apr 6.
2
Applications of CRISPR-Cas9 in Alzheimer's Disease and Related Disorders.
Int J Mol Sci. 2022 Aug 5;23(15):8714. doi: 10.3390/ijms23158714.
3
Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy.
Int J Mol Sci. 2019 Nov 24;20(23):5897. doi: 10.3390/ijms20235897.
4
Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases.
Neurol Sci. 2018 Nov;39(11):1827-1835. doi: 10.1007/s10072-018-3521-0. Epub 2018 Aug 3.
5
CRISPR-Cas9: from Genome Editing to Cancer Research.
Int J Biol Sci. 2016 Nov 4;12(12):1427-1436. doi: 10.7150/ijbs.17421. eCollection 2016.
6
Genetically modified pig models for neurodegenerative disorders.
J Pathol. 2016 Jan;238(2):267-87. doi: 10.1002/path.4654. Epub 2015 Nov 28.
7
CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy.
Sci China Life Sci. 2017 May;60(5):468-475. doi: 10.1007/s11427-017-9057-2. Epub 2017 Apr 20.
8
Mosaicism in CRISPR/Cas9-mediated genome editing.
Dev Biol. 2019 Jan 15;445(2):156-162. doi: 10.1016/j.ydbio.2018.10.008. Epub 2018 Oct 22.
9
CRISPR/Cas9 therapeutics for liver diseases.
J Cell Biochem. 2018 Jun;119(6):4265-4278. doi: 10.1002/jcb.26627. Epub 2018 Feb 22.
10
Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.
Neurochem Int. 2018 Jan;112:187-196. doi: 10.1016/j.neuint.2017.07.007. Epub 2017 Jul 18.

引用本文的文献

1
CRISPR/Cas9 a genomic engineering technology for treatment in ALS mouse models.
Regen Ther. 2025 Aug 13;30:575-583. doi: 10.1016/j.reth.2025.07.009. eCollection 2025 Dec.
4
Applications of CRISPR-Cas9 in Alzheimer's Disease and Related Disorders.
Int J Mol Sci. 2022 Aug 5;23(15):8714. doi: 10.3390/ijms23158714.
5
Basic and Preclinical Research for Personalized Medicine.
J Pers Med. 2021 Apr 29;11(5):354. doi: 10.3390/jpm11050354.
6
Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics.
Biomedicines. 2020 Jan 13;8(1):13. doi: 10.3390/biomedicines8010013.
7
The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Alzheimer's Disease.
J Alzheimers Dis Parkinsonism. 2018;8(3). doi: 10.4172/2161-0460.1000439. Epub 2018 May 31.
8
Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer's disease.
Clin Interv Aging. 2018 Feb 7;13:221-233. doi: 10.2147/CIA.S155145. eCollection 2018.
9
White matter damage after traumatic brain injury: A role for damage associated molecular patterns.
Biochim Biophys Acta Mol Basis Dis. 2017 Oct;1863(10 Pt B):2614-2626. doi: 10.1016/j.bbadis.2017.05.020. Epub 2017 May 19.

本文引用的文献

2
Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.
Cell. 2017 Jan 12;168(1-2):150-158.e10. doi: 10.1016/j.cell.2016.12.009. Epub 2016 Dec 29.
3
New CRISPR-Cas systems from uncultivated microbes.
Nature. 2017 Feb 9;542(7640):237-241. doi: 10.1038/nature21059. Epub 2016 Dec 22.
4
Naturally Occurring Off-Switches for CRISPR-Cas9.
Cell. 2016 Dec 15;167(7):1829-1838.e9. doi: 10.1016/j.cell.2016.11.017. Epub 2016 Dec 8.
5
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):863-8. doi: 10.1038/nbt.3609. Epub 2016 Jun 6.
6
CRISPR/Cas9: Implications for Modeling and Therapy of Neurodegenerative Diseases.
Front Mol Neurosci. 2016 Apr 28;9:30. doi: 10.3389/fnmol.2016.00030. eCollection 2016.
7
DNA-guided genome editing using the Natronobacterium gregoryi Argonaute.
Nat Biotechnol. 2016 Jul;34(7):768-73. doi: 10.1038/nbt.3547. Epub 2016 May 2.
8
Efficient Generation of Myostatin Gene Mutated Rabbit by CRISPR/Cas9.
Sci Rep. 2016 Apr 26;6:25029. doi: 10.1038/srep25029.
9
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946. Epub 2016 Apr 20.
10
Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):2868-73. doi: 10.1073/pnas.1520244113. Epub 2016 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验