Suppr超能文献

炎症细胞因子如何、在何处以及为何调节肾钠转运体?

Inflammatory cytokines regulate renal sodium transporters: how, where, and why?

作者信息

Norlander Allison E, Madhur Meena S

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville Tennesee; and.

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville Tennesee; and

出版信息

Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F141-F144. doi: 10.1152/ajprenal.00465.2016. Epub 2017 Apr 12.

Abstract

Hypertension is growing in epidemic proportions worldwide and is now the leading preventable cause of premature death. For over a century, we have known that the kidney plays a critical role in blood pressure regulation. Specifically, abnormalities in renal sodium transport appear to be a final common pathway that gives rise to elevated blood pressure regardless of the nature of the initial hypertensive stimulus. However, it is only in the past decade that we have come to realize that inflammatory cytokines secreted by innate and adaptive immune cells, as well as renal epithelial cells, can modulate the expression and activity of sodium transporters all along the nephron, leading to alterations in pressure natriuresis, sodium and water balance, and ultimately hypertension. This mini-review highlights specific cytokines and the transporters that they regulate and discusses why inflammatory cytokines may have evolved to serve this function.

摘要

高血压在全球正呈流行趋势增长,目前是可预防的过早死亡的主要原因。一个多世纪以来,我们已经知道肾脏在血压调节中起着关键作用。具体而言,肾钠转运异常似乎是导致血压升高的最终共同途径,而无论初始高血压刺激的性质如何。然而,直到过去十年我们才开始意识到,先天免疫细胞、适应性免疫细胞以及肾上皮细胞分泌的炎性细胞因子可调节整个肾单位钠转运体的表达和活性,从而导致压力性利钠、钠和水平衡改变,最终引发高血压。这篇小型综述重点介绍了特定的细胞因子及其调节的转运体,并讨论了炎性细胞因子为何可能进化出这种功能。

相似文献

1
Inflammatory cytokines regulate renal sodium transporters: how, where, and why?
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F141-F144. doi: 10.1152/ajprenal.00465.2016. Epub 2017 Apr 12.
2
Tumor necrosis factor-α, kidney function, and hypertension.
Am J Physiol Renal Physiol. 2017 Oct 1;313(4):F1005-F1008. doi: 10.1152/ajprenal.00535.2016. Epub 2017 Jul 19.
3
Involvement of ENaC in the development of salt-sensitive hypertension.
Am J Physiol Renal Physiol. 2017 Aug 1;313(2):F135-F140. doi: 10.1152/ajprenal.00427.2016. Epub 2016 Dec 21.
4
Epithelial Sodium Channel and Salt-Sensitive Hypertension.
Hypertension. 2021 Mar 3;77(3):759-767. doi: 10.1161/HYPERTENSIONAHA.120.14481. Epub 2021 Jan 25.
5
Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice.
Hypertension. 2015 Mar;65(3):569-76. doi: 10.1161/HYPERTENSIONAHA.114.04975. Epub 2015 Jan 19.
6
Control of ENaC-mediated sodium reabsorption in the distal nephron by Bradykinin.
Vitam Horm. 2015;98:137-54. doi: 10.1016/bs.vh.2014.12.005. Epub 2015 Feb 14.
7
Salt, Hypertension, and Immunity.
Annu Rev Physiol. 2018 Feb 10;80:283-307. doi: 10.1146/annurev-physiol-021317-121134. Epub 2017 Nov 16.
9
Renal Dysfunction Induced by Kidney-Specific Gene Deletion of as a Primary Cause of Salt-Dependent Hypertension.
Hypertension. 2017 Jul;70(1):111-118. doi: 10.1161/HYPERTENSIONAHA.116.08966. Epub 2017 May 30.
10
Targeting cytokine signaling in salt-sensitive hypertension.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1153-F1158. doi: 10.1152/ajprenal.00273.2016. Epub 2016 Aug 24.

引用本文的文献

1
HDL-Cholesterol and Triglycerides Dynamics: Essential Players in Metabolic Syndrome.
Antioxidants (Basel). 2025 Apr 3;14(4):434. doi: 10.3390/antiox14040434.
2
The Covert Side of Ascites in Cirrhosis: Cellular and Molecular Aspects.
Biomedicines. 2025 Mar 10;13(3):680. doi: 10.3390/biomedicines13030680.
3
Targeting inerleukin-6 for renoprotection.
Front Immunol. 2024 Dec 11;15:1502299. doi: 10.3389/fimmu.2024.1502299. eCollection 2024.
4
Potassium-Alkali-Enriched Diet, Hypertension, and Proteinuria following Uninephrectomy.
J Am Soc Nephrol. 2024 Oct 1;35(10):1330-1350. doi: 10.1681/ASN.0000000000000420. Epub 2024 Jun 24.
5
Analysis of the combined effect of rs699 and rs5051 on angiotensinogen expression and hypertension.
Chronic Dis Transl Med. 2023 Dec 26;10(2):102-117. doi: 10.1002/cdt3.103. eCollection 2024 Jun.
6
Untapped potential of gut microbiome for hypertension management.
Gut Microbes. 2024 Jan-Dec;16(1):2356278. doi: 10.1080/19490976.2024.2356278. Epub 2024 Jun 2.
7
Urine Cell Transcriptomes Implicate Specific Renal Inflammatory Pathways Associated With Difficult-to-Control Hypertension.
J Am Heart Assoc. 2023 Mar 21;12(6):e026242. doi: 10.1161/JAHA.122.026242. Epub 2023 Mar 9.
8
Effects of renal denervation on endogenous ouabain in spontaneously hypertensive rats.
Acta Cir Bras. 2023 Jan 6;37(11):e371102. doi: 10.1590/acb371102. eCollection 2023.
10
Deficiency of MicroRNA-181a Results in Transcriptome-Wide Cell-Specific Changes in the Kidney and Increases Blood Pressure.
Hypertension. 2021 Nov;78(5):1322-1334. doi: 10.1161/HYPERTENSIONAHA.121.17384. Epub 2021 Sep 20.

本文引用的文献

2
Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats.
Am J Physiol Renal Physiol. 2016 Sep 1;311(3):F555-61. doi: 10.1152/ajprenal.00594.2015. Epub 2016 Jun 8.
3
Interleukin-17A Regulates Renal Sodium Transporters and Renal Injury in Angiotensin II-Induced Hypertension.
Hypertension. 2016 Jul;68(1):167-74. doi: 10.1161/HYPERTENSIONAHA.116.07493. Epub 2016 May 2.
4
Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells.
Am J Physiol Renal Physiol. 2016 May 15;310(10):F1000-7. doi: 10.1152/ajprenal.00482.2015. Epub 2016 Mar 23.
6
Role of the kidney in the pathogenesis of hypertension: time for a neo-Guytonian paradigm or a paradigm shift?
Am J Physiol Regul Integr Comp Physiol. 2016 Feb 1;310(3):R217-29. doi: 10.1152/ajpregu.00254.2015. Epub 2015 Nov 18.
7
Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells.
J Clin Invest. 2015 Nov 2;125(11):4212-22. doi: 10.1172/JCI81151. Epub 2015 Oct 20.
8
High salt primes a specific activation state of macrophages, M(Na).
Cell Res. 2015 Aug;25(8):893-910. doi: 10.1038/cr.2015.87. Epub 2015 Jul 24.
9
Inflammation, immunity, and hypertensive end-organ damage.
Circ Res. 2015 Mar 13;116(6):1022-33. doi: 10.1161/CIRCRESAHA.116.303697.
10
Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation.
J Clin Invest. 2015 Mar 2;125(3):1189-202. doi: 10.1172/JCI76327. Epub 2015 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验