Suppr超能文献

组成型激活的SPAK通过激活NCC和重塑远端肾小管导致高钾血症。

Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.

作者信息

Grimm P Richard, Coleman Richard, Delpire Eric, Welling Paul A

机构信息

Department of Physiology, Maryland Kidney Discovery Center, University of Maryland Medical School, Baltimore, Maryland; and.

Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee.

出版信息

J Am Soc Nephrol. 2017 Sep;28(9):2597-2606. doi: 10.1681/ASN.2016090948. Epub 2017 Apr 25.

Abstract

Aberrant activation of with no lysine (WNK) kinases causes familial hyperkalemic hypertension (FHHt). Thiazide diuretics treat the disease, fostering the view that hyperactivation of the thiazide-sensitive sodium-chloride cotransporter (NCC) in the distal convoluted tubule (DCT) is solely responsible. However, aberrant signaling in the aldosterone-sensitive distal nephron (ASDN) and inhibition of the potassium-excretory renal outer medullary potassium (ROMK) channel have also been implicated. To test these ideas, we introduced kinase-activating mutations after Lox-P sites in the mouse gene, which encodes the terminal kinase in the WNK signaling pathway, Ste20-related proline-alanine-rich kinase (SPAK). Renal expression of the constitutively active (CA)-SPAK mutant was specifically targeted to the early DCT using a DCT-driven Cre recombinase. CA-SPAK mice displayed thiazide-treatable hypertension and hyperkalemia, concurrent with NCC hyperphosphorylation. However, thiazide-mediated inhibition of NCC and consequent restoration of sodium excretion did not immediately restore urinary potassium excretion in CA-SPAK mice. Notably, CA-SPAK mice exhibited ASDN remodeling, involving a reduction in connecting tubule mass and attenuation of epithelial sodium channel (ENaC) and ROMK expression and apical localization. Blocking hyperactive NCC in the DCT gradually restored ASDN structure and ENaC and ROMK expression, concurrent with the restoration of urinary potassium excretion. These findings verify that NCC hyperactivity underlies FHHt but also reveal that NCC-dependent changes in the driving force for potassium secretion are not sufficient to explain hyperkalemia. Instead, a DCT-ASDN coupling process controls potassium balance in health and becomes aberrantly activated in FHHt.

摘要

无赖氨酸(WNK)激酶的异常激活会导致家族性高钾性高血压(FHHt)。噻嗪类利尿剂可治疗该病,这使人认为远曲小管(DCT)中噻嗪敏感的氯化钠共转运体(NCC)的过度激活是唯一原因。然而,醛固酮敏感的远端肾单位(ASDN)中的异常信号传导以及钾排泄性肾外髓质钾(ROMK)通道的抑制也与之有关。为了验证这些观点,我们在小鼠基因的Lox-P位点之后引入了激酶激活突变,该基因编码WNK信号通路中的末端激酶,即与Ste20相关的富含脯氨酸-丙氨酸的激酶(SPAK)。使用DCT驱动的Cre重组酶将组成型活性(CA)-SPAK突变体的肾脏表达特异性靶向早期DCT。CA-SPAK小鼠表现出噻嗪类可治疗的高血压和高钾血症,同时伴有NCC过度磷酸化。然而,噻嗪介导对NCC的抑制以及随之而来钠排泄的恢复并未立即恢复CA-SPAK小鼠尿钾排泄量。值得注意的是,CA-SPAK小鼠表现出ASDN重塑,包括连接小管质量减少以及上皮钠通道(ENaC)和ROMK表达及顶端定位减弱。阻断DCT中过度活跃的NCC可逐渐恢复ASDN结构以及ENaC和ROMK表达,同时恢复尿钾排泄。这些发现证实NCC过度活跃是FHHt的基础,但也揭示了NCC依赖性钾分泌驱动力的变化不足以解释高钾血症。相反,DCT-ASDN耦合过程在健康状态下控制钾平衡,并在FHHt中异常激活。

相似文献

1
Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.
J Am Soc Nephrol. 2017 Sep;28(9):2597-2606. doi: 10.1681/ASN.2016090948. Epub 2017 Apr 25.
3
Distal convoluted tubule-specific disruption of the COP9 signalosome but not its regulatory target cullin 3 causes tubular injury.
Am J Physiol Renal Physiol. 2024 Oct 1;327(4):F667-F682. doi: 10.1152/ajprenal.00138.2024. Epub 2024 Aug 29.
4
WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F216-F228. doi: 10.1152/ajprenal.00232.2019. Epub 2019 Nov 18.
6
The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway.
J Hum Hypertens. 2019 Jul;33(7):508-523. doi: 10.1038/s41371-019-0170-6. Epub 2019 Feb 5.
8
A molecular update on pseudohypoaldosteronism type II.
Am J Physiol Renal Physiol. 2013 Dec 1;305(11):F1513-20. doi: 10.1152/ajprenal.00440.2013. Epub 2013 Oct 9.
9
10
SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.
J Physiol. 2016 Sep 1;594(17):4945-66. doi: 10.1113/JP272311. Epub 2016 May 29.

引用本文的文献

1
NRBP1 and TSC22D proteins affect distal convoluted tubule physiology through modulation of the WNK pathway.
Sci Adv. 2025 Jul 18;11(29):eadv2083. doi: 10.1126/sciadv.adv2083. Epub 2025 Jul 16.
2
Severe acute kidney injury with anuria induced by hypokalemia requiring hemodialysis: a case study.
BMC Nephrol. 2025 Mar 24;26(1):149. doi: 10.1186/s12882-025-03973-z.
3
4
The evolving concepts of KS-WNK1 effect on NCC activity.
Am J Physiol Renal Physiol. 2025 Feb 1;328(2):F258-F269. doi: 10.1152/ajprenal.00272.2024. Epub 2024 Dec 31.
5
Familial Hyperkalemic Hypertension.
Compr Physiol. 2024 Dec 19;14(5):5839-5874. doi: 10.1002/cphy.c240004.
6
Early-life sodium restriction programs autonomic dysfunction and salt sensitivity in male C57BL/6J mice.
Am J Physiol Regul Integr Comp Physiol. 2025 Jan 1;328(1):R109-R120. doi: 10.1152/ajpregu.00250.2024. Epub 2024 Nov 16.
7
Distal convoluted tubule-specific disruption of the COP9 signalosome but not its regulatory target cullin 3 causes tubular injury.
Am J Physiol Renal Physiol. 2024 Oct 1;327(4):F667-F682. doi: 10.1152/ajprenal.00138.2024. Epub 2024 Aug 29.
8
Postnatal renal tubule development: roles of tubular flow and flux.
Curr Opin Nephrol Hypertens. 2024 Sep 1;33(5):518-525. doi: 10.1097/MNH.0000000000001007. Epub 2024 Jun 24.
9
Low potassium activation of proximal mTOR/AKT signaling is mediated by Kir4.2.
Nat Commun. 2024 Jun 17;15(1):5144. doi: 10.1038/s41467-024-49562-w.

本文引用的文献

1
ENaC and ROMK activity are inhibited in the DCT2/CNT of TgWnk4 mice.
Am J Physiol Renal Physiol. 2017 Apr 1;312(4):F682-F688. doi: 10.1152/ajprenal.00420.2016. Epub 2016 Nov 9.
2
Regulation of Renal Electrolyte Transport by WNK and SPAK-OSR1 Kinases.
Annu Rev Physiol. 2016;78:367-89. doi: 10.1146/annurev-physiol-021115-105431.
3
Roles and Regulation of Renal K Channels.
Annu Rev Physiol. 2016;78:415-35. doi: 10.1146/annurev-physiol-021115-105423. Epub 2015 Dec 11.
4
Integrated compensatory network is activated in the absence of NCC phosphorylation.
J Clin Invest. 2015 May;125(5):2136-50. doi: 10.1172/JCI78558. Epub 2015 Apr 20.
5
SPAK-mediated NCC regulation in response to low-K+ diet.
Am J Physiol Renal Physiol. 2015 Apr 15;308(8):F923-31. doi: 10.1152/ajprenal.00388.2014. Epub 2015 Jan 28.
8
Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved.
Am J Physiol Renal Physiol. 2014 Jun 15;306(12):F1507-19. doi: 10.1152/ajprenal.00255.2013. Epub 2014 Apr 23.
9
WNK4 is the major WNK positively regulating NCC in the mouse kidney.
Biosci Rep. 2014 May 9;34(3):e00107. doi: 10.1042/BSR20140047.
10
Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis.
Am J Physiol Renal Physiol. 2014 May 1;306(9):F1059-68. doi: 10.1152/ajprenal.00015.2014. Epub 2014 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验