Suppr超能文献

NHS酯作为用于绘制全蛋白质组可配体热点的多功能基于反应性的探针。

NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.

作者信息

Ward Carl C, Kleinman Jordan I, Nomura Daniel K

机构信息

Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, 127 Morgan Hall, University of California, Berkeley , Berkeley, California 94720, United States.

出版信息

ACS Chem Biol. 2017 Jun 16;12(6):1478-1483. doi: 10.1021/acschembio.7b00125. Epub 2017 May 1.

Abstract

Most of the proteome is considered undruggable, oftentimes hindering translational efforts for drug discovery. Identifying previously unknown druggable hotspots in proteins would enable strategies for pharmacologically interrogating these sites with small molecules. Activity-based protein profiling (ABPP) has arisen as a powerful chemoproteomic strategy that uses reactivity-based chemical probes to map reactive, functional, and ligandable hotspots in complex proteomes, which has enabled inhibitor discovery against various therapeutic protein targets. Here, we report an alkyne-functionalized N-hydroxysuccinimide-ester (NHS-ester) as a versatile reactivity-based probe for mapping the reactivity of a wide range of nucleophilic ligandable hotspots, including lysines, serines, threonines, and tyrosines, encompassing active sites, allosteric sites, post-translational modification sites, protein interaction sites, and previously uncharacterized potential binding sites. Surprisingly, we also show that fragment-based NHS-ester ligands can be made to confer selectivity for specific lysine hotspots on specific targets including Dpyd, Aldh2, and Gstt1. We thus put forth NHS-esters as promising reactivity-based probes and chemical scaffolds for covalent ligand discovery.

摘要

蛋白质组的大部分被认为是不可成药的,这常常阻碍药物发现的转化研究。识别蛋白质中以前未知的可成药热点将为用小分子对这些位点进行药理学研究提供策略。基于活性的蛋白质谱分析(ABPP)已成为一种强大的化学蛋白质组学策略,它使用基于反应性的化学探针来绘制复杂蛋白质组中的反应性、功能性和可配体热点,这使得针对各种治疗性蛋白质靶点的抑制剂发现成为可能。在此,我们报道了一种炔烃功能化的N-羟基琥珀酰亚胺酯(NHS-酯),作为一种通用的基于反应性的探针,用于绘制广泛的亲核可配体热点的反应性,包括赖氨酸、丝氨酸、苏氨酸和酪氨酸,涵盖活性位点、别构位点、翻译后修饰位点、蛋白质相互作用位点以及以前未表征的潜在结合位点。令人惊讶的是,我们还表明,可以制备基于片段的NHS-酯配体,以赋予对包括Dpyd、Aldh2和Gstt1在内的特定靶点上特定赖氨酸热点的选择性。因此,我们提出NHS-酯作为有前途的基于反应性的探针和用于共价配体发现的化学支架。

相似文献

1
NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
ACS Chem Biol. 2017 Jun 16;12(6):1478-1483. doi: 10.1021/acschembio.7b00125. Epub 2017 May 1.
2
Reimagining Druggability Using Chemoproteomic Platforms.
Acc Chem Res. 2021 Apr 6;54(7):1801-1813. doi: 10.1021/acs.accounts.1c00065. Epub 2021 Mar 18.
3
Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots.
Curr Opin Biotechnol. 2017 Feb;43:25-33. doi: 10.1016/j.copbio.2016.08.003. Epub 2016 Aug 26.
5
Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
Nat Chem. 2023 Nov;15(11):1616-1625. doi: 10.1038/s41557-023-01281-3. Epub 2023 Jul 17.
6
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
7
Applications of Reactive Cysteine Profiling.
Curr Top Microbiol Immunol. 2019;420:375-417. doi: 10.1007/82_2018_120.
8
Lysine-Targeted Inhibitors and Chemoproteomic Probes.
Annu Rev Biochem. 2019 Jun 20;88:365-381. doi: 10.1146/annurev-biochem-061516-044805. Epub 2019 Jan 11.
9
Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
Nat Chem. 2019 Dec;11(12):1113-1123. doi: 10.1038/s41557-019-0351-5. Epub 2019 Oct 28.
10
Global profiling of lysine reactivity and ligandability in the human proteome.
Nat Chem. 2017 Dec;9(12):1181-1190. doi: 10.1038/nchem.2826. Epub 2017 Jul 31.

引用本文的文献

1
Photoactivatable Electrophilic Glycosylselenosulfonates for Ultrafast Modification of Alkynes and Thiols.
ACS Cent Sci. 2025 Jul 7;11(8):1400-1407. doi: 10.1021/acscentsci.5c00650. eCollection 2025 Aug 27.
2
Activity-Based Protein Profiling for Functional Cysteines and Protein Target Identification.
Methods Mol Biol. 2025;2921:331-344. doi: 10.1007/978-1-0716-4502-4_18.
3
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
4
One-Pot Construction of NHS-Activated Magnetic Particles for Chemoselective Capture of Carboxyl Metabolites.
Adv Sci (Weinh). 2025 Apr;12(13):e2413830. doi: 10.1002/advs.202413830. Epub 2025 Feb 11.
5
Kinetic principles of chemical cross-link formation for protein-protein interactions.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2402040121. doi: 10.1073/pnas.2402040121. Epub 2024 Dec 9.
9
Proteome-Wide Fragment-Based Ligand and Target Discovery.
Isr J Chem. 2023 Mar;63(3-4). doi: 10.1002/ijch.202200098. Epub 2023 Feb 8.

本文引用的文献

2
Targeted protein degradation by PROTACs.
Pharmacol Ther. 2017 Jun;174:138-144. doi: 10.1016/j.pharmthera.2017.02.027. Epub 2017 Feb 14.
3
Chemoproteomic Screening of Covalent Ligands Reveals UBA5 As a Novel Pancreatic Cancer Target.
ACS Chem Biol. 2017 Apr 21;12(4):899-904. doi: 10.1021/acschembio.7b00020. Epub 2017 Feb 15.
4
Mapping Proteome-wide Targets of Glyphosate in Mice.
Cell Chem Biol. 2017 Feb 16;24(2):133-140. doi: 10.1016/j.chembiol.2016.12.013. Epub 2017 Jan 26.
5
Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.
ACS Chem Biol. 2017 Mar 17;12(3):635-642. doi: 10.1021/acschembio.6b01001. Epub 2017 Jan 20.
6
Profilin1 biology and its mutation, actin(g) in disease.
Cell Mol Life Sci. 2017 Mar;74(6):967-981. doi: 10.1007/s00018-016-2372-1. Epub 2016 Sep 26.
7
Activity-based protein profiling for mapping and pharmacologically interrogating proteome-wide ligandable hotspots.
Curr Opin Biotechnol. 2017 Feb;43:25-33. doi: 10.1016/j.copbio.2016.08.003. Epub 2016 Aug 26.
8
Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design.
Nat Rev Drug Discov. 2016 Nov;15(11):771-785. doi: 10.1038/nrd.2016.139. Epub 2016 Jul 29.
9
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
10
Mapping proteome-wide interactions of reactive chemicals using chemoproteomic platforms.
Curr Opin Chem Biol. 2016 Feb;30:68-76. doi: 10.1016/j.cbpa.2015.11.007. Epub 2015 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验