Suppr超能文献

gCoda:成分数据的条件依赖网络推断

gCoda: Conditional Dependence Network Inference for Compositional Data.

作者信息

Fang Huaying, Huang Chengcheng, Zhao Hongyu, Deng Minghua

机构信息

1 LMAM, School of Mathematical Sciences, Peking University , Beijing, China .

2 Center for Quantitative Biology, Peking University , Beijing, China .

出版信息

J Comput Biol. 2017 Jul;24(7):699-708. doi: 10.1089/cmb.2017.0054. Epub 2017 May 10.

Abstract

The increasing quality and the reducing cost of high-throughput sequencing technologies for 16S rRNA gene profiling enable researchers to directly analyze microbe communities in natural environments. The direct interactions among microbial species of a given ecological system can help us understand the principles of community assembly and maintenance under various conditions. Compositionality and dimensionality of microbiome data are two main challenges for inferring the direct interaction network of microbes. In this article, we use the logistic normal distribution to model the background mechanism of microbiome data, which can appropriately deal with the compositional nature of the data. The direct interaction relationships are then modeled via the conditional dependence network under this logistic normal assumption. We then propose a novel penalized maximum likelihood method called gCoda to estimate the sparse structure of inverse covariance for latent normal variables to address the high dimensionality of the microbiome data. An effective Majorization-Minimization algorithm is proposed to solve the optimization problem in gCoda. Simulation studies show that gCoda outperforms existing methods (e.g., SPIEC-EASI) in edge recovery of inverse covariance for compositional data under a variety of scenarios. gCoda also performs better than SPIEC-EASI for inferring direct microbial interactions of mouse skin microbiome data.

摘要

用于16S rRNA基因谱分析的高通量测序技术质量不断提高,成本不断降低,这使得研究人员能够直接分析自然环境中的微生物群落。特定生态系统中微生物物种之间的直接相互作用有助于我们理解在各种条件下群落组装和维持的原理。微生物组数据的构成性和维度性是推断微生物直接相互作用网络的两个主要挑战。在本文中,我们使用逻辑正态分布对微生物组数据的背景机制进行建模,该模型能够适当地处理数据的构成性质。然后在这种逻辑正态假设下,通过条件依赖网络对直接相互作用关系进行建模。接着,我们提出了一种名为gCoda的新型惩罚最大似然方法,用于估计潜在正态变量的逆协方差的稀疏结构,以解决微生物组数据的高维度问题。我们还提出了一种有效的逐次逼近最小化算法来解决gCoda中的优化问题。模拟研究表明,在各种情况下,gCoda在恢复构成性数据的逆协方差的边方面优于现有方法(例如SPIEC-EASI)。在推断小鼠皮肤微生物组数据的直接微生物相互作用方面,gCoda也比SPIEC-EASI表现更好。

相似文献

1
gCoda: Conditional Dependence Network Inference for Compositional Data.
J Comput Biol. 2017 Jul;24(7):699-708. doi: 10.1089/cmb.2017.0054. Epub 2017 May 10.
2
Compositional data network analysis via lasso penalized D-trace loss.
Bioinformatics. 2019 Sep 15;35(18):3404-3411. doi: 10.1093/bioinformatics/btz098.
3
Direct interaction network and differential network inference from compositional data via lasso penalized D-trace loss.
PLoS One. 2019 Jul 24;14(7):e0207731. doi: 10.1371/journal.pone.0207731. eCollection 2019.
4
Sparse and compositionally robust inference of microbial ecological networks.
PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. eCollection 2015 May.
5
CCLasso: correlation inference for compositional data through Lasso.
Bioinformatics. 2015 Oct 1;31(19):3172-80. doi: 10.1093/bioinformatics/btv349. Epub 2015 Jun 4.
6
Direct interaction network inference for compositional data via codaloss.
J Bioinform Comput Biol. 2020 Dec;18(6):2050037. doi: 10.1142/S0219720020500377. Epub 2020 Oct 27.
7
gmcoda: Graphical model for multiple compositional vectors in microbiome studies.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad700.
8
Inference and Analysis of SPIEC-EASI Microbiome Networks.
Methods Mol Biol. 2021;2232:155-171. doi: 10.1007/978-1-0716-1040-4_14.
9
Compositional data analysis of the microbiome: fundamentals, tools, and challenges.
Ann Epidemiol. 2016 May;26(5):330-5. doi: 10.1016/j.annepidem.2016.03.002. Epub 2016 Mar 31.

引用本文的文献

3
Cross-validation for training and testing co-occurrence network inference algorithms.
BMC Bioinformatics. 2025 Mar 6;26(1):74. doi: 10.1186/s12859-025-06083-7.
4
OneNet-One network to rule them all: Consensus network inference from microbiome data.
PLoS Comput Biol. 2024 Dec 6;20(12):e1012627. doi: 10.1371/journal.pcbi.1012627. eCollection 2024 Dec.
5
Identifying microbial drivers in biological phenotypes with a Bayesian network regression model.
Ecol Evol. 2024 May 20;14(5):e11039. doi: 10.1002/ece3.11039. eCollection 2024 May.
6
fastCCLasso: a fast and efficient algorithm for estimating correlation matrix from compositional data.
Bioinformatics. 2024 May 2;40(5). doi: 10.1093/bioinformatics/btae314.
7
Progress on network modeling and analysis of gut microecology: a review.
Appl Environ Microbiol. 2024 Mar 20;90(3):e0009224. doi: 10.1128/aem.00092-24. Epub 2024 Feb 28.
8
gmcoda: Graphical model for multiple compositional vectors in microbiome studies.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad700.
9
Latent Network Estimation and Variable Selection for Compositional Data Via Variational EM.
J Comput Graph Stat. 2022;31(1):163-175. doi: 10.1080/10618600.2021.1935971. Epub 2021 Jul 19.
10
Novel technologies to characterize and engineer the microbiome in inflammatory bowel disease.
Gut Microbes. 2022 Jan-Dec;14(1):2107866. doi: 10.1080/19490976.2022.2107866.

本文引用的文献

1
Learning Microbial Interaction Networks from Metagenomic Count Data.
J Comput Biol. 2016 Jun;23(6):526-35. doi: 10.1089/cmb.2016.0061.
2
Correlation detection strategies in microbial data sets vary widely in sensitivity and precision.
ISME J. 2016 Jul;10(7):1669-81. doi: 10.1038/ismej.2015.235. Epub 2016 Feb 23.
3
Investigating microbial co-occurrence patterns based on metagenomic compositional data.
Bioinformatics. 2015 Oct 15;31(20):3322-9. doi: 10.1093/bioinformatics/btv364. Epub 2015 Jun 16.
4
CCLasso: correlation inference for compositional data through Lasso.
Bioinformatics. 2015 Oct 1;31(19):3172-80. doi: 10.1093/bioinformatics/btv349. Epub 2015 Jun 4.
5
Sparse and compositionally robust inference of microbial ecological networks.
PLoS Comput Biol. 2015 May 7;11(5):e1004226. doi: 10.1371/journal.pcbi.1004226. eCollection 2015 May.
7
Inferring correlation networks from genomic survey data.
PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20.
8
Microbial co-occurrence relationships in the human microbiome.
PLoS Comput Biol. 2012;8(7):e1002606. doi: 10.1371/journal.pcbi.1002606. Epub 2012 Jul 12.
9
Microbial interactions: from networks to models.
Nat Rev Microbiol. 2012 Jul 16;10(8):538-50. doi: 10.1038/nrmicro2832.
10
Experimental and analytical tools for studying the human microbiome.
Nat Rev Genet. 2011 Dec 16;13(1):47-58. doi: 10.1038/nrg3129.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验